基于时频分析自动识别睡眠脑电的梭形波
http://www.100md.com
上海交通大学生物医学工程系 200030上海;西安交通大学生物医学工程研究所 宦飞;郑崇勋
脑电图|睡眠梭形波|时频分析|自动识别
参见附件(29kb)。
上海交通大学生物医学工程系 200030上海;西安交通大学生物医学工程研究所 宦飞;郑崇勋
关键词:脑电图;睡眠梭形波;时频分析;自动识别
摘要:为了识别睡眠脑电图 (EEG)中出现的梭形波 ,使用Choi Williams分布对EEG信号进行时频变换 ,根据瞬时频谱估计局部范围里EEG的波形特征 ,在此基础上设计了一个自动识别睡眠EEG中梭形波的方法 ,对实际睡眠EEG中的梭形波进行识别 ,识别正确率为 85 0 4 % ,并且能够提供梭形波的定量指标 .实验结果表明 ,经过进一步完善 ,这种方法可以作为神经内科专家用于研究睡眠生理变化的一种辅助工具...
上海交通大学生物医学工程系 200030上海;西安交通大学生物医学工程研究所 宦飞;郑崇勋
关键词:脑电图;睡眠梭形波;时频分析;自动识别
摘要:为了识别睡眠脑电图 (EEG)中出现的梭形波 ,使用Choi Williams分布对EEG信号进行时频变换 ,根据瞬时频谱估计局部范围里EEG的波形特征 ,在此基础上设计了一个自动识别睡眠EEG中梭形波的方法 ,对实际睡眠EEG中的梭形波进行识别 ,识别正确率为 85 0 4 % ,并且能够提供梭形波的定量指标 .实验结果表明 ,经过进一步完善 ,这种方法可以作为神经内科专家用于研究睡眠生理变化的一种辅助工具...
您现在查看是摘要介绍页,详见CAJ附件(29kb)。