生物医用复合人工骨修复材料的应用研究
【文献标识码】 A 【文章编号】 1609-6614(2003)23-2180-03
生物医用材料是用于和生物系统结合,治疗或替换生物机体中的组织、器官或增进其功能的材料 [1] 。长期研究与应用发现,传统医用金属材料、高分子材料和一些生物陶瓷材料在体内表现为生物惰性,植入体内不与组织发生键合,与组织结合不牢固,容易松动而导致失败 [2] 。而生物活性无机生物材料虽然具有良好的生物相容性和生物活性,能够和自然骨组织形成牢固的生物性键合,且有高的强度和耐磨、耐蚀性、化学稳定性等,但材料的抗弯强度低、脆性大,在生理环境中的抗疲劳与抗破坏强度不高,它只能应用于不承受负荷或仅承受小的纯压应力负荷的情况 [3] 。因此,单一材料不能很好地满足临床应用的要求。利用不同性质的材料复合而形成的复合生物材料,不仅可兼具组分材料的性质,而且可以得到单组分材料不具备的新性能。复合生物材料由此引起了人们极大的兴趣和广泛的关注。生物医用复合材料是由两种或两种以上的不同材料复合而成的生物医用材料,它主要用于人体组织的修复、替换和人工器官的制造。特别是模仿了自然骨的组成和结构的生物活性无机材料和有机高分子材料所形成的复合材料 [4] 。这种复合材料的出现和发展,为获得结构和性质类似于人体组织的生物医学材料开辟了一条广阔的途径,为人工器官和人工修复材料的开发与应用带来了新的希望。
, 百拇医药
1 临床对人工骨修复材料的要求
1.1 生物医用材料必须满足的要求 植入体内的材料在人体复杂的生理环境中,长期受物理、化学、生物电等因素的影响,同时各组织以及器官间普遍存在着许多动态的相互作用,因此,生物医用组分材料必须满足下面几项要求:(1)具有良好的生物相容性和物理相容性,保证材料复合后不出现有损生物学性能的现象;(2)具有良好的生物稳定性,材料的结构不因体液作用而有变化,同时材料组分不引起生物体的生物反应;(3)具有足够的强度和韧性,能够承受人体的机械作用力,所用材料与组织的弹性模量、硬度、耐磨性能相适应,增强体材料还必须具有高的刚度、弹性模量和抗冲击性能;(4)具有良好的灭菌性能,保证生物材料在临床上的顺利应用。此外,生物材料要有良好的成型、加工性能,不因成型加工困难而使其应用受到限制 [5] 。
1.2 自然骨的生物力学特点 在人的运动系统中骨与关节是受力载体,骨与关节承受各种外力,在骨内产生应力,并经骨进行传导。由于应力性质不同,骨骼发生一系列的生物力学适应性改变,如应力应变,应力塑形,应力改建等。骨只有在不断地适应承受外力产生应力刺激的力学环境中,才能不断地进行骨结构自身的塑形和改建,也只有不断进行骨结构塑形和改建,骨才能适应外部环境的变化。功能活动不但直接决定着骨的形态、尺寸大小和结构方式,而且还使骨的强度、刚度、稳定性始终适应于功能活动的需要 [6] 。骨的生物力学研究结果表明,充足的血供和完整的受力骨结构的生物学基础和不断地承受外力,产生应力,传导应力的力学环境是活骨存在和改建的主要条件。如果骨的血运和骨的完整性被破坏,或者骨的正常力学环境被部分替代,就会发生骨折延迟愈合或骨质疏松 [7] 。
, 百拇医药
1.3 临床对人工骨的要求 生物相容性好,无毒副作用;有良好的韧性、强度、刚度、抗疲劳性;长期稳定或与骨折愈合同步降解吸收;便于消毒而不变形、不变性、不变质;轻便、价廉、易于加工、可塑形 [8] 。
1.4 骨折内固定系统对人工骨的要求 人工骨进行小的骨块填充和修补,其要求并不高,更为重要的作用在于大块骨缺损、整段骨缺损的替换和重建,这对人工骨的要求就非常高。由于生物医用材料的特殊性,参与大块骨缺损、整段骨缺损的替换和重建,涉及到的不仅是材料本身的特性,更大程度上应注意到人工骨仅是骨折内固定系统中的一部分,骨折内固定系统对人工骨提出了更高的要求。骨折复位后固定是骨折维持稳定的关键,内固定必须具备两个基本功能:一是维持骨折复位后正常几何形态,而不移位即稳定性;二是对轴向传导的应力不发生遮挡效应 [9~10] 。
刚度即对抗变形的能力,要维持骨折复位后正常几何形态,就要求内固定装置的刚度大于骨骼的刚度。固定的目的是维持骨折复位、重建后的稳定,在愈合早期内固定系统要能对抗外力而不发生变形,必须具有足够的刚度。如何不借助其它材料就能做到愈合早期的坚强固定,这对人工骨的研究开发是一个重点和难点。随着骨折愈合过程的进展,骨骼的刚度逐渐提高恢复到骨折前刚度,装置也就失去固定作用。目前广泛使用的不锈钢内固定系统的弹性模量(7200GPa)远远大于股骨弹性模量(20GPa)。大多数人工骨的弹性模量远远超过股骨的弹性模量 [11] 。
, 百拇医药
骨的替换和重建,其牢固的固定是极其关键的,但牢固固定与应力遮挡是一对矛盾。生物医用复合材料人工骨其弹性模量已可做到与人骨相当,有望解决应力遮挡这一传统医用金属材料无法克服的问题,为骨折愈合的研究展现了良好的前景。可吸收人工骨的应用具有重要的意义,但由于降解吸收与强度又是一对矛盾,故在临床使用上仍十分有限。同时,与骨折愈合同步降解的人工骨,因人体的部位、个体差异以及诸多不可预期的原因,尚难达到理想状态 [12] 。
2 生物无机与有机高分子复合骨修复材料
自20世纪70年代末,羟基磷灰石作为新型生物材料问世以来,已越来越引起医学界及相关学科浓厚兴趣。由于羟基磷灰石是由与人体硬组织无机质相近的物质组成的,因此羟基磷灰石是骨和牙齿种植中很具潜力的生物材料。由于纯羟基磷灰石脆性较大,强度较低,所以人们都在通过各种途径对它进行改性制成复合材料,生物有机高分子基复合材料,尤其生物无机与高分子复合材料的出现和发展,为人工器官和人工修复材料、骨填充材料开发与应用奠定了坚实的基础 [13,14] 。
, 百拇医药
自然骨是由磷灰石和高分子胶原纤维构成的无机/有机复合材料,具有良好的力学性能。基于仿生的概念,人们期望能研制出一种机械强度和韧性好,弹性模量接近自然骨的生物活性材料,一些聚合物具有较好的韧性和接近人骨的弹性模量,但缺乏生物活性。磷酸钙无机材料是构成人骨无机质的主要成分,因而与自然骨组织有天然的亲和性,磷酸钙无机材料生物相容性好,能与周围骨组织形成牢固的键合,但该种材料的脆性大、抗折强度低和成型困难 [15] 。磷酸钙无机材料与高聚物复合,可以将二者性能充分结合起来,可望得到力学性能好(强度、韧性好),弹性模量与人骨相近且具有良好生物相容性和生物活性的骨修复和重建生物材料。目前常见的生物无机与有机高分子复合材料主要有:羟基磷灰石(HA)、磷酸三钙(TCP)、A-W玻璃陶瓷(BGC)和生物玻璃(BG)与增强高密度聚乙烯(HDPE)、聚酰胺(PA)、聚甲基丙烯酸甲酯(PMMA)、聚乳酸(PLA)、聚乙醇酸(PGA)及聚乳酸和聚乙醇酸的共聚物(PLGA)等高分子化合物的复合材料 [16,17] 。HDPE-HA复合材料随HA掺量的增加,其密度也增加,弹性模量可从1GPa提高到9MPa,由于该复合材料的弹性模量处于自然骨杨氏模量范围之内,具有极好的力学相容性,并且具有引导新骨形成的功能。AW玻璃陶瓷和生物玻璃增强HDPE复合材料具有与HA增强HDPE复合材料相似的力学性能和生物学性能,复合材料在37℃的SBF溶液中体外实验研究表明,在其表面可形成磷灰石层,通过控制和调整AW玻璃陶瓷和生物 玻璃的含量,使其满足不同临床应用的要求。聚乳酸具有良好的生物相容性和可降解性,但材料还缺乏骨结合能力,对X线具有穿透性,不便于临床上显影观察。将聚乳酸与HA颗粒复合有助于提高材料的初始硬度和刚性,延缓材料的早期降解速度,便于骨折早期愈合。随着聚乳酸的降解吸收,HA在体内逐渐转化为自然骨组织,从而提高材料的骨结合能力和材料的生物相容性;此外还可提高材料对X-射线的阻拒作用,便于临床显影观察 [18] 。
, 百拇医药
3 HA/胶原复合骨修复材料
胶原是机体生命的最根本的基质,它具有以脯氨酸等中性氨基酸和含有碱性或酸性侧链的氨基酸蛋白质的结构和特性。选用与自然骨有机质更接近的胶原与HA复合,这样植入材料就能和受骨的骨胶原末端的胺基和羟基相结合,形成具有生物活性的化学性结合界面,从而发挥其正常的生理功能。目前研究已证实,胶原与多孔羟基磷灰石陶瓷复合,其强度比HA陶瓷提高2~3倍,胶原膜有利于孔隙内新生骨生长,植入狗的股骨后仅4周,新骨即已充满所有大的孔隙。胶原与颗粒状HA复合已成为克服牙槽嵴萎缩的最理想材料。HA-胶原复合材料已得到广泛、深入的研究与开发 [19] 。
当HA与胶原质量比为4.5∶1时,HA形成时间可由4.5~5h缩短到2.5~3h。研究表明脱矿胶原基质对溶液中的Ca、P具有诱导吸附作用,并符合传统的成核理论,胶原表面的非均相成核可降低HA晶核的临界能或表面能,胶原纤维在溶胶中的出现缩短了HA形成的最初时间。冷冻干燥后的复合材料SEM分析表明,HA晶粒沉积在胶原纤维表面,胶原纤维为HA的形成提供了成核的模板或成核的位置,并能降低其成核能,对HA形成起到加速作用。复合材料的抗弯强度达7~12.5Mpa,弹性模量为0.2~1.7GPa,HA-胶原复合材料的断裂功为0.51kj/m 2 ,与HA陶瓷和自然骨相比,高于纯HA(0.07kj/m 2 ),而略低于自然骨 [20] 。
, 百拇医药
天津市口腔医院曾对控制析出法制备的纳米尺寸羟基磷灰石胶原复合人工骨材料进行修复家兔颅颌面实验性穿通型骨缺损研究。纳米羟基磷灰石晶体/胶原复合骨材料中,胶原蛋白占总质量的35%,与天然骨成分接近,结构和形貌图谱分析亦与天然骨类似。该复合材料植入动物体内实验表明:术后10周发现骨创区形成一薄层骨片,中心区0.2cm为骨性连合,形成硬纤维膜。术后12周,复合材料形成的骨创区形成骨性桥接,骨创关闭。组织切片观察,复合材料植入区成骨细胞、软骨细胞生长活跃,类骨质丰富,成骨细胞呈立方形状成排或成环状排列于骨小梁表面,缺损区有骨性填充,有骨岛出现甚至形成骨性桥接。这是由于纳米级羟基磷灰石结晶均匀沉积于胶原蛋白上,便于被机体组织和细胞识别和利用,胶原蛋白诱导组织细胞生长的生物学特性以及作为骨组织的天然基质促进了细胞的分化、增殖、粘附、成熟,生成类骨质进而矿化,加快了骨创的愈合及折骨的生长 [21] 。
4 n-HA/聚酰胺复合骨修复材料
羟基磷灰石(HA)是构成人体硬组织的主要无机质,它无毒、无刺激、无任何不良反应,具有良好的生物相容性和生物活性。其表面带有极性,与人体细胞、多糖和蛋白质能以氢键结合,与机体组织有较强的亲和力。羟基磷灰石不但能起到钙盐沉积的支架作用,而且还能诱导新骨的形成,能直接和人体软、硬组织形成键合,在骨骼修复和替换中正在发挥越来越重要的作用。然而羟基磷灰石生物陶瓷的脆性和不易于手术赋形特点,限制了它在临床上的广泛应用。为提高羟基磷灰石的韧性和线型加工性能,可以把羟基磷灰石和高分子复合,制备新型有良好机械力学性能和生物活性的可承力的骨修复和替代材料。传统的复合方法很难实现既提高羟基磷灰石在复合材料中的含量,同时又保证复合材料两相间的界面结合和力学强度,因而有必要采用纳米级羟基磷灰石和聚合物复合,来制备纳米生物医用复合材料。聚酰胺(PA)由于和人体的胶原蛋白在分子结构上十分相似,所以和人体组织有良好的相容性,是一类优良的医用高分子材料,且具有较高的韧性和强度,在临床有广泛而长期的应用,如医用缝线、复合人工皮等。由于在其主链上含有许多重复的极性酰胺基团(-HN-C=O),以及链两端的极性基团(-NH 2 ,-COOH),因而它是一类极性聚合物,与极性的无机磷酸钙材料相容性好 [22,23] 。
, 百拇医药
自然骨中磷灰石含量在65wt%左右,并有序沉淀于胶原基体中,但目前报道的一般合成方法很难获得一种高度HA含量的生物活性复合材料。李玉宝等人用常压共溶法制备了磷灰石/聚酰胺复合材料。结果表明,磷灰石在复合材料中的含量可达65wt%左右,接近自然骨中磷灰石的水平。在复合材料的两相界面间形成了化学键;此种复合材料的性能,特别是抗压、抗弯强度和弹性模量与人体皮质骨类似 [24] 。动物实验结果表明:磷灰石/聚酰胺复合材料具有优异的生物活性和力学性能,与自然骨能形成牢固的生物性的骨键合。在狗的软组织中还发现该种材料有诱导软骨的特性,是一种较为理想的新型骨修复材料 [17] 。
在该复合材料中,n-HA含量高于同类产品,因而具有很高的生物活性;n-HA在复合材料中分布均匀;n-HA与PA66之间既有化学键合又有分子间的相互作用,使复合材料能更好地传递外应力,达到既增强又增韧的目的。n-HA/PA66复合材料具有良好的生物活性和力学性能,是一种优良的人工骨材料 [25] 。该人工骨材料在骨的愈合、塑形整个过程可持续给予骨缺损(尤其是大段骨缺损)部位坚强的力学支持,可缩短住院时间,使成功修复大段骨缺损的临床愿望得以实现。对经过灭菌的n-HA/PA66复合材料进行毒性测试、溶血测试、刺激测试等,表明n-HA/PA66复合材料无毒,无刺激,生物安全性好。长耳兔的牙、脊椎、颅骨等植入实验显示,n-HA/PA66复合材料具有良好的生物相容性和生物活性,动物临床试验已完成。临床人体骨修复研究结果表明,20余例手术效果优良,并取得突破性成果。目前,该人工骨正进入临床使用阶段 [26] 。
, 百拇医药
5 展望
随着现代科学技术的飞速发展,生物医用复合材料将愈来愈显示其重要作用。纳米技术的应用为生物医用复合材料的研究带来突破性的成果。生物医用无机与有机高分子复合材料的研究与开发,目前还处于起步阶段,用于临床的复合材料仍然很少。人工骨的临床应用虽然已有较长时间,但大多也仅仅是用作充填材料,同真正意义上的人工骨还有距离。生物医用复合材料已成为生物医用材料研究和发展中最活跃的领域。目前,这种新型生物医用符合材料正在与药物、基因、蛋白和生长因子等相结合,使生物医用材料又走向生物医药材料这一崭新领域。
参考文献
1 师昌绪.材料科学技术百科全书,北京:中国大百科全书出版社,1995,919-921.
2 俞耀庭.生物医用材料,天津:天津大学出版社,2000,121-122.
, 百拇医药
3 顾汉卿,徐国风.生物医学材料学,天津:天津科技翻译出版社,1993,46.
4 Xuejiang Wang,Yubao Li,Jie Wei.Development of biomimetic nano hyˉdroxyapatite/poly(hexamethylene adipamide)composites.Biomaterials,2002,23:4787-4791.
5 张玉军,尹衍升,王迎军.羟基磷灰石及其复合生物陶瓷材料研究进展.生物医学工程学杂志,1999,16:37-39.
6 张树桧.骨折生物力学治疗学,北京:中国科学技术出版社,2001,76.
7 马克昌.骨生理学,郑州:河南医科大学出版社,2000,141.
, http://www.100md.com
8 李世普.生物医用材料导论,武汉:武汉工业大学出版社,2000,40.
9 郭晓东,郑启新.可吸收骨折内固定材料研究现况.国外医学·创伤与外科基本问题分册,1998,3:13-16.
10 陈启明,等主译.骨关节肌肉系统生物学和生物力学,第2版,北京:人民卫生出版社,2001,146.
11 Larry L,Hench,Julia M,et al.Third-generation biomedical materiˉals.Science,2002,295:1016-1017.
12 Karen J.L.Burg,Scott Porter,James F.Kellam.Biomaterial developˉments for bone tissue engineering.Biomaterials,2000,21:2347-2359.
, 百拇医药
13 Damien CJ,Parsons JR.Bone graft and bone graft substitutes:a review of current technology and application.J Appl Biomater,1991,2:187-208.
14 Wei jie,Li Yubao.A study on nano-composite of nano-apatite/polyamide.Journal of Materials Science,2003,38:3303-3306.
15 Wei Jie,Li Yubao,Yan Yonggang.Development of clinical cement of nanoapatite and polyamide composite.High Technology Letters,2001,4:8-12.
, 百拇医药
16 杨志明.组织工程,北京:化学工业出版社,2002,16.
17 李玉宝,魏杰.纳米生物医用材料及其应用.中国医学科学院学报,2002,2:203-206.
18 张宏泉,闫玉华,李世普.生物医用复合材料的研究进展及趋势.北京生物医学工程,2000,1:64-67.
19 杨志明.组织工程与临床,成都:四川科学技术出版社,2000,314.
20 刘白玲.胶原在生物医学领域的应用.皮革科学与工程,1999,3:71-74.
21 冯庆玲,崔福斋,张伟.纳米羟基磷灰石胶原骨修复材料.中国医学科学院学报,2002,4:124-128.
22 Yan Yonggang,Li Yubao.Synthesis and properties of a copolymer of poly(1,4-phenylene sulfide)-poly(2,4-phenylene sulfide acid)and its HA reinforcedcomposite.European Polymer Journal,2003,2:411-416.
, 百拇医药
23 魏杰,李玉宝.可注射纳米磷灰石/高分子复合骨修复材料的研究.材料研究导报,2003,3:316-319.
24 郭颖,李玉宝,严永刚.纳米磷灰石晶体/聚酰胺66复合材料的制备和界面研究.四川大学学报(自然科学版),2002,3:480-483.
25 王学江,李玉宝.羟基磷灰石纳米针晶与聚酰胺仿生复合生物材料研究.高技术通讯,2001,5:1-5.
26 严永刚,李玉宝.聚酰胺-66/羟基磷灰石复合材料的制备和性能研究.塑料工业,2000,3:38-40.
基金项目:国家十五科技攻关重点项目资助(2001BA310A05)
作者单位:10041成都国家纳米生物医用材料产业化孵化基地
10064成都四川大学纳米生物材料研究中心
(编辑使 臻), http://www.100md.com(钟)
生物医用材料是用于和生物系统结合,治疗或替换生物机体中的组织、器官或增进其功能的材料 [1] 。长期研究与应用发现,传统医用金属材料、高分子材料和一些生物陶瓷材料在体内表现为生物惰性,植入体内不与组织发生键合,与组织结合不牢固,容易松动而导致失败 [2] 。而生物活性无机生物材料虽然具有良好的生物相容性和生物活性,能够和自然骨组织形成牢固的生物性键合,且有高的强度和耐磨、耐蚀性、化学稳定性等,但材料的抗弯强度低、脆性大,在生理环境中的抗疲劳与抗破坏强度不高,它只能应用于不承受负荷或仅承受小的纯压应力负荷的情况 [3] 。因此,单一材料不能很好地满足临床应用的要求。利用不同性质的材料复合而形成的复合生物材料,不仅可兼具组分材料的性质,而且可以得到单组分材料不具备的新性能。复合生物材料由此引起了人们极大的兴趣和广泛的关注。生物医用复合材料是由两种或两种以上的不同材料复合而成的生物医用材料,它主要用于人体组织的修复、替换和人工器官的制造。特别是模仿了自然骨的组成和结构的生物活性无机材料和有机高分子材料所形成的复合材料 [4] 。这种复合材料的出现和发展,为获得结构和性质类似于人体组织的生物医学材料开辟了一条广阔的途径,为人工器官和人工修复材料的开发与应用带来了新的希望。
, 百拇医药
1 临床对人工骨修复材料的要求
1.1 生物医用材料必须满足的要求 植入体内的材料在人体复杂的生理环境中,长期受物理、化学、生物电等因素的影响,同时各组织以及器官间普遍存在着许多动态的相互作用,因此,生物医用组分材料必须满足下面几项要求:(1)具有良好的生物相容性和物理相容性,保证材料复合后不出现有损生物学性能的现象;(2)具有良好的生物稳定性,材料的结构不因体液作用而有变化,同时材料组分不引起生物体的生物反应;(3)具有足够的强度和韧性,能够承受人体的机械作用力,所用材料与组织的弹性模量、硬度、耐磨性能相适应,增强体材料还必须具有高的刚度、弹性模量和抗冲击性能;(4)具有良好的灭菌性能,保证生物材料在临床上的顺利应用。此外,生物材料要有良好的成型、加工性能,不因成型加工困难而使其应用受到限制 [5] 。
1.2 自然骨的生物力学特点 在人的运动系统中骨与关节是受力载体,骨与关节承受各种外力,在骨内产生应力,并经骨进行传导。由于应力性质不同,骨骼发生一系列的生物力学适应性改变,如应力应变,应力塑形,应力改建等。骨只有在不断地适应承受外力产生应力刺激的力学环境中,才能不断地进行骨结构自身的塑形和改建,也只有不断进行骨结构塑形和改建,骨才能适应外部环境的变化。功能活动不但直接决定着骨的形态、尺寸大小和结构方式,而且还使骨的强度、刚度、稳定性始终适应于功能活动的需要 [6] 。骨的生物力学研究结果表明,充足的血供和完整的受力骨结构的生物学基础和不断地承受外力,产生应力,传导应力的力学环境是活骨存在和改建的主要条件。如果骨的血运和骨的完整性被破坏,或者骨的正常力学环境被部分替代,就会发生骨折延迟愈合或骨质疏松 [7] 。
, 百拇医药
1.3 临床对人工骨的要求 生物相容性好,无毒副作用;有良好的韧性、强度、刚度、抗疲劳性;长期稳定或与骨折愈合同步降解吸收;便于消毒而不变形、不变性、不变质;轻便、价廉、易于加工、可塑形 [8] 。
1.4 骨折内固定系统对人工骨的要求 人工骨进行小的骨块填充和修补,其要求并不高,更为重要的作用在于大块骨缺损、整段骨缺损的替换和重建,这对人工骨的要求就非常高。由于生物医用材料的特殊性,参与大块骨缺损、整段骨缺损的替换和重建,涉及到的不仅是材料本身的特性,更大程度上应注意到人工骨仅是骨折内固定系统中的一部分,骨折内固定系统对人工骨提出了更高的要求。骨折复位后固定是骨折维持稳定的关键,内固定必须具备两个基本功能:一是维持骨折复位后正常几何形态,而不移位即稳定性;二是对轴向传导的应力不发生遮挡效应 [9~10] 。
刚度即对抗变形的能力,要维持骨折复位后正常几何形态,就要求内固定装置的刚度大于骨骼的刚度。固定的目的是维持骨折复位、重建后的稳定,在愈合早期内固定系统要能对抗外力而不发生变形,必须具有足够的刚度。如何不借助其它材料就能做到愈合早期的坚强固定,这对人工骨的研究开发是一个重点和难点。随着骨折愈合过程的进展,骨骼的刚度逐渐提高恢复到骨折前刚度,装置也就失去固定作用。目前广泛使用的不锈钢内固定系统的弹性模量(7200GPa)远远大于股骨弹性模量(20GPa)。大多数人工骨的弹性模量远远超过股骨的弹性模量 [11] 。
, 百拇医药
骨的替换和重建,其牢固的固定是极其关键的,但牢固固定与应力遮挡是一对矛盾。生物医用复合材料人工骨其弹性模量已可做到与人骨相当,有望解决应力遮挡这一传统医用金属材料无法克服的问题,为骨折愈合的研究展现了良好的前景。可吸收人工骨的应用具有重要的意义,但由于降解吸收与强度又是一对矛盾,故在临床使用上仍十分有限。同时,与骨折愈合同步降解的人工骨,因人体的部位、个体差异以及诸多不可预期的原因,尚难达到理想状态 [12] 。
2 生物无机与有机高分子复合骨修复材料
自20世纪70年代末,羟基磷灰石作为新型生物材料问世以来,已越来越引起医学界及相关学科浓厚兴趣。由于羟基磷灰石是由与人体硬组织无机质相近的物质组成的,因此羟基磷灰石是骨和牙齿种植中很具潜力的生物材料。由于纯羟基磷灰石脆性较大,强度较低,所以人们都在通过各种途径对它进行改性制成复合材料,生物有机高分子基复合材料,尤其生物无机与高分子复合材料的出现和发展,为人工器官和人工修复材料、骨填充材料开发与应用奠定了坚实的基础 [13,14] 。
, 百拇医药
自然骨是由磷灰石和高分子胶原纤维构成的无机/有机复合材料,具有良好的力学性能。基于仿生的概念,人们期望能研制出一种机械强度和韧性好,弹性模量接近自然骨的生物活性材料,一些聚合物具有较好的韧性和接近人骨的弹性模量,但缺乏生物活性。磷酸钙无机材料是构成人骨无机质的主要成分,因而与自然骨组织有天然的亲和性,磷酸钙无机材料生物相容性好,能与周围骨组织形成牢固的键合,但该种材料的脆性大、抗折强度低和成型困难 [15] 。磷酸钙无机材料与高聚物复合,可以将二者性能充分结合起来,可望得到力学性能好(强度、韧性好),弹性模量与人骨相近且具有良好生物相容性和生物活性的骨修复和重建生物材料。目前常见的生物无机与有机高分子复合材料主要有:羟基磷灰石(HA)、磷酸三钙(TCP)、A-W玻璃陶瓷(BGC)和生物玻璃(BG)与增强高密度聚乙烯(HDPE)、聚酰胺(PA)、聚甲基丙烯酸甲酯(PMMA)、聚乳酸(PLA)、聚乙醇酸(PGA)及聚乳酸和聚乙醇酸的共聚物(PLGA)等高分子化合物的复合材料 [16,17] 。HDPE-HA复合材料随HA掺量的增加,其密度也增加,弹性模量可从1GPa提高到9MPa,由于该复合材料的弹性模量处于自然骨杨氏模量范围之内,具有极好的力学相容性,并且具有引导新骨形成的功能。AW玻璃陶瓷和生物玻璃增强HDPE复合材料具有与HA增强HDPE复合材料相似的力学性能和生物学性能,复合材料在37℃的SBF溶液中体外实验研究表明,在其表面可形成磷灰石层,通过控制和调整AW玻璃陶瓷和生物 玻璃的含量,使其满足不同临床应用的要求。聚乳酸具有良好的生物相容性和可降解性,但材料还缺乏骨结合能力,对X线具有穿透性,不便于临床上显影观察。将聚乳酸与HA颗粒复合有助于提高材料的初始硬度和刚性,延缓材料的早期降解速度,便于骨折早期愈合。随着聚乳酸的降解吸收,HA在体内逐渐转化为自然骨组织,从而提高材料的骨结合能力和材料的生物相容性;此外还可提高材料对X-射线的阻拒作用,便于临床显影观察 [18] 。
, 百拇医药
3 HA/胶原复合骨修复材料
胶原是机体生命的最根本的基质,它具有以脯氨酸等中性氨基酸和含有碱性或酸性侧链的氨基酸蛋白质的结构和特性。选用与自然骨有机质更接近的胶原与HA复合,这样植入材料就能和受骨的骨胶原末端的胺基和羟基相结合,形成具有生物活性的化学性结合界面,从而发挥其正常的生理功能。目前研究已证实,胶原与多孔羟基磷灰石陶瓷复合,其强度比HA陶瓷提高2~3倍,胶原膜有利于孔隙内新生骨生长,植入狗的股骨后仅4周,新骨即已充满所有大的孔隙。胶原与颗粒状HA复合已成为克服牙槽嵴萎缩的最理想材料。HA-胶原复合材料已得到广泛、深入的研究与开发 [19] 。
当HA与胶原质量比为4.5∶1时,HA形成时间可由4.5~5h缩短到2.5~3h。研究表明脱矿胶原基质对溶液中的Ca、P具有诱导吸附作用,并符合传统的成核理论,胶原表面的非均相成核可降低HA晶核的临界能或表面能,胶原纤维在溶胶中的出现缩短了HA形成的最初时间。冷冻干燥后的复合材料SEM分析表明,HA晶粒沉积在胶原纤维表面,胶原纤维为HA的形成提供了成核的模板或成核的位置,并能降低其成核能,对HA形成起到加速作用。复合材料的抗弯强度达7~12.5Mpa,弹性模量为0.2~1.7GPa,HA-胶原复合材料的断裂功为0.51kj/m 2 ,与HA陶瓷和自然骨相比,高于纯HA(0.07kj/m 2 ),而略低于自然骨 [20] 。
, 百拇医药
天津市口腔医院曾对控制析出法制备的纳米尺寸羟基磷灰石胶原复合人工骨材料进行修复家兔颅颌面实验性穿通型骨缺损研究。纳米羟基磷灰石晶体/胶原复合骨材料中,胶原蛋白占总质量的35%,与天然骨成分接近,结构和形貌图谱分析亦与天然骨类似。该复合材料植入动物体内实验表明:术后10周发现骨创区形成一薄层骨片,中心区0.2cm为骨性连合,形成硬纤维膜。术后12周,复合材料形成的骨创区形成骨性桥接,骨创关闭。组织切片观察,复合材料植入区成骨细胞、软骨细胞生长活跃,类骨质丰富,成骨细胞呈立方形状成排或成环状排列于骨小梁表面,缺损区有骨性填充,有骨岛出现甚至形成骨性桥接。这是由于纳米级羟基磷灰石结晶均匀沉积于胶原蛋白上,便于被机体组织和细胞识别和利用,胶原蛋白诱导组织细胞生长的生物学特性以及作为骨组织的天然基质促进了细胞的分化、增殖、粘附、成熟,生成类骨质进而矿化,加快了骨创的愈合及折骨的生长 [21] 。
4 n-HA/聚酰胺复合骨修复材料
羟基磷灰石(HA)是构成人体硬组织的主要无机质,它无毒、无刺激、无任何不良反应,具有良好的生物相容性和生物活性。其表面带有极性,与人体细胞、多糖和蛋白质能以氢键结合,与机体组织有较强的亲和力。羟基磷灰石不但能起到钙盐沉积的支架作用,而且还能诱导新骨的形成,能直接和人体软、硬组织形成键合,在骨骼修复和替换中正在发挥越来越重要的作用。然而羟基磷灰石生物陶瓷的脆性和不易于手术赋形特点,限制了它在临床上的广泛应用。为提高羟基磷灰石的韧性和线型加工性能,可以把羟基磷灰石和高分子复合,制备新型有良好机械力学性能和生物活性的可承力的骨修复和替代材料。传统的复合方法很难实现既提高羟基磷灰石在复合材料中的含量,同时又保证复合材料两相间的界面结合和力学强度,因而有必要采用纳米级羟基磷灰石和聚合物复合,来制备纳米生物医用复合材料。聚酰胺(PA)由于和人体的胶原蛋白在分子结构上十分相似,所以和人体组织有良好的相容性,是一类优良的医用高分子材料,且具有较高的韧性和强度,在临床有广泛而长期的应用,如医用缝线、复合人工皮等。由于在其主链上含有许多重复的极性酰胺基团(-HN-C=O),以及链两端的极性基团(-NH 2 ,-COOH),因而它是一类极性聚合物,与极性的无机磷酸钙材料相容性好 [22,23] 。
, 百拇医药
自然骨中磷灰石含量在65wt%左右,并有序沉淀于胶原基体中,但目前报道的一般合成方法很难获得一种高度HA含量的生物活性复合材料。李玉宝等人用常压共溶法制备了磷灰石/聚酰胺复合材料。结果表明,磷灰石在复合材料中的含量可达65wt%左右,接近自然骨中磷灰石的水平。在复合材料的两相界面间形成了化学键;此种复合材料的性能,特别是抗压、抗弯强度和弹性模量与人体皮质骨类似 [24] 。动物实验结果表明:磷灰石/聚酰胺复合材料具有优异的生物活性和力学性能,与自然骨能形成牢固的生物性的骨键合。在狗的软组织中还发现该种材料有诱导软骨的特性,是一种较为理想的新型骨修复材料 [17] 。
在该复合材料中,n-HA含量高于同类产品,因而具有很高的生物活性;n-HA在复合材料中分布均匀;n-HA与PA66之间既有化学键合又有分子间的相互作用,使复合材料能更好地传递外应力,达到既增强又增韧的目的。n-HA/PA66复合材料具有良好的生物活性和力学性能,是一种优良的人工骨材料 [25] 。该人工骨材料在骨的愈合、塑形整个过程可持续给予骨缺损(尤其是大段骨缺损)部位坚强的力学支持,可缩短住院时间,使成功修复大段骨缺损的临床愿望得以实现。对经过灭菌的n-HA/PA66复合材料进行毒性测试、溶血测试、刺激测试等,表明n-HA/PA66复合材料无毒,无刺激,生物安全性好。长耳兔的牙、脊椎、颅骨等植入实验显示,n-HA/PA66复合材料具有良好的生物相容性和生物活性,动物临床试验已完成。临床人体骨修复研究结果表明,20余例手术效果优良,并取得突破性成果。目前,该人工骨正进入临床使用阶段 [26] 。
, 百拇医药
5 展望
随着现代科学技术的飞速发展,生物医用复合材料将愈来愈显示其重要作用。纳米技术的应用为生物医用复合材料的研究带来突破性的成果。生物医用无机与有机高分子复合材料的研究与开发,目前还处于起步阶段,用于临床的复合材料仍然很少。人工骨的临床应用虽然已有较长时间,但大多也仅仅是用作充填材料,同真正意义上的人工骨还有距离。生物医用复合材料已成为生物医用材料研究和发展中最活跃的领域。目前,这种新型生物医用符合材料正在与药物、基因、蛋白和生长因子等相结合,使生物医用材料又走向生物医药材料这一崭新领域。
参考文献
1 师昌绪.材料科学技术百科全书,北京:中国大百科全书出版社,1995,919-921.
2 俞耀庭.生物医用材料,天津:天津大学出版社,2000,121-122.
, 百拇医药
3 顾汉卿,徐国风.生物医学材料学,天津:天津科技翻译出版社,1993,46.
4 Xuejiang Wang,Yubao Li,Jie Wei.Development of biomimetic nano hyˉdroxyapatite/poly(hexamethylene adipamide)composites.Biomaterials,2002,23:4787-4791.
5 张玉军,尹衍升,王迎军.羟基磷灰石及其复合生物陶瓷材料研究进展.生物医学工程学杂志,1999,16:37-39.
6 张树桧.骨折生物力学治疗学,北京:中国科学技术出版社,2001,76.
7 马克昌.骨生理学,郑州:河南医科大学出版社,2000,141.
, http://www.100md.com
8 李世普.生物医用材料导论,武汉:武汉工业大学出版社,2000,40.
9 郭晓东,郑启新.可吸收骨折内固定材料研究现况.国外医学·创伤与外科基本问题分册,1998,3:13-16.
10 陈启明,等主译.骨关节肌肉系统生物学和生物力学,第2版,北京:人民卫生出版社,2001,146.
11 Larry L,Hench,Julia M,et al.Third-generation biomedical materiˉals.Science,2002,295:1016-1017.
12 Karen J.L.Burg,Scott Porter,James F.Kellam.Biomaterial developˉments for bone tissue engineering.Biomaterials,2000,21:2347-2359.
, 百拇医药
13 Damien CJ,Parsons JR.Bone graft and bone graft substitutes:a review of current technology and application.J Appl Biomater,1991,2:187-208.
14 Wei jie,Li Yubao.A study on nano-composite of nano-apatite/polyamide.Journal of Materials Science,2003,38:3303-3306.
15 Wei Jie,Li Yubao,Yan Yonggang.Development of clinical cement of nanoapatite and polyamide composite.High Technology Letters,2001,4:8-12.
, 百拇医药
16 杨志明.组织工程,北京:化学工业出版社,2002,16.
17 李玉宝,魏杰.纳米生物医用材料及其应用.中国医学科学院学报,2002,2:203-206.
18 张宏泉,闫玉华,李世普.生物医用复合材料的研究进展及趋势.北京生物医学工程,2000,1:64-67.
19 杨志明.组织工程与临床,成都:四川科学技术出版社,2000,314.
20 刘白玲.胶原在生物医学领域的应用.皮革科学与工程,1999,3:71-74.
21 冯庆玲,崔福斋,张伟.纳米羟基磷灰石胶原骨修复材料.中国医学科学院学报,2002,4:124-128.
22 Yan Yonggang,Li Yubao.Synthesis and properties of a copolymer of poly(1,4-phenylene sulfide)-poly(2,4-phenylene sulfide acid)and its HA reinforcedcomposite.European Polymer Journal,2003,2:411-416.
, 百拇医药
23 魏杰,李玉宝.可注射纳米磷灰石/高分子复合骨修复材料的研究.材料研究导报,2003,3:316-319.
24 郭颖,李玉宝,严永刚.纳米磷灰石晶体/聚酰胺66复合材料的制备和界面研究.四川大学学报(自然科学版),2002,3:480-483.
25 王学江,李玉宝.羟基磷灰石纳米针晶与聚酰胺仿生复合生物材料研究.高技术通讯,2001,5:1-5.
26 严永刚,李玉宝.聚酰胺-66/羟基磷灰石复合材料的制备和性能研究.塑料工业,2000,3:38-40.
基金项目:国家十五科技攻关重点项目资助(2001BA310A05)
作者单位:10041成都国家纳米生物医用材料产业化孵化基地
10064成都四川大学纳米生物材料研究中心
(编辑使 臻), http://www.100md.com(钟)