国际上三种新型疫苗的研究进展
迄今为止,人们对绝大多数的人与动物传染病都巳研制和应用了疫苗,但是还有一些传染病,包括古老的传染病(如流感)以及新出现的传染病(如艾滋病、猪兰耳病)还没有十分有效的疫苗。因而无法控制其流行。应用现代生物技术,研制新型疫苗已经提到日程上来了。
一、重组活载体疫苗
应用无病原性或弱毒疫苗株病毒和细菌,例如痘病毒、鸡痘病毒、火鸡疱疹病毒、伪狂犬病毒、大哩腺病毒以及卡介苗分枝杆菌和沙门氏菌弱毒疫苗株等作为载体,插入外源性保护基因,构建重组活载体疫苗。由于外源基因已是载体病毒或载体细菌“本身”成分,其所引起的免疫应答,常不低于完整病毒或细菌相应成分引起免疫强度,而且各成分之间一般不发生相互干扰或排拆现象,又因可以同时插入几个外源基因,一苗防多病,故是当前认为最有开发和应用前景的动物疫苗。
二、基因缺失疫苗
构建缺失某一毒力基因的所谓基因缺失疫苗,亦有明显进展,其突出优点是疫苗株不易返祖而重新获得毒力,例如牛传染性气管炎病毒和伪狂犬病毒的tK基因缺失疫苗,后者已经进行野外试验。猴和人免疫缺陷病毒的nef基因缺失株和牛白血病病毒的px基因缺失株亦已构建成功。由于基因缺失疫苗株病毒的复制能力并不明显降低,其所导致的免疫应答不低于常规的弱毒活疫苗。最近构建成功双基因缺失疫苗,也就是缺失2个与毒力有关的基因,这样的疫苗株当然更为安全。基因缺失疫苗的生产工艺与相应的弱毒疫苗相同,在生产过程和生产成本上不存在问题,关键是实际应用中的安全性。因为病毒在自然状态下可能与野毒株发生重组,或者发生核酸修补,使疫苗株原来缺失的基因恢复而重新获得毒力。目前已有这方面的报道。有的基因缺失疫苗对孕畜和仔畜的毒力偏高。
, 百拇医药
三、基因疫苗
基因疫苗又称核酸疫苗,是将编码某种抗原蛋白的基因置于真核表达元件的控制之下,构成重组质粒DNA,将其直接导入动物机体内,通过宿主细胞的转录翻译系统合成抗原蛋白,从而诱导宿主产生对该抗原蛋白的免疫应答,以达到预防和治疗疾病的目的。重组质粒DNA在细胞内表达的多肽抗原与宿主的MHCI和MHCⅡ类分子结合后,提呈给免疫活性细胞(ICC),诱导免疫反应。许多研究者将不同病原的保护性抗原基因直接导入动物体内,引起特异性免疫应答,并已在一些疾病如流感、狂犬病、乙肝、艾滋病,牛疱疹病毒感染以及结核病和疟疾等取得初步结果。
基因疫苗具有一些明显的优点:
①基因疫苗在接种后,蛋白抗原在宿主细胞内表达,加工处理过程与病原的自然感染相似,抗原提呈过程也相同,因而可以诱导产生细胞和体液免疫;②外源基因在体内存在较长时间,不断表达外源蛋白,持续给免疫系统提供刺激,因此能够刺激产生较强和较持久的免疫应答;③基因疫苗具有共同的理化特性,因此可以将含有不同抗原基因的质粒混合起来进行联合免疫;④质粒载体没有免疫原性,因此可以反复使用。
, 百拇医药
抗原基因可以是单个基因,或具有协同保护功能的一组基因。一般以pBR322或pUC质粒为基本骨架,带有细菌复制子、真核细胞启动子和Poly(A)加尾信号,有的还含有增强子。
基因疫苗可作肌肉、皮下、皮内、腹腔内和滴鼻接种。目前认为横纹肌是唯一能高效摄取并表达外源基因的组织,但是肌肉内的ICC很少,提呈给淋巴细胞的效率低。皮肤内具有许多ICC,包括:淋巴细胞、巨噬细胞作树突状细胞。皮肤的郎格汉斯(Langerhans)细胞在接触抗原后能有效激活T淋巴细胞,因此认为皮内注射是最理想的接种途径。但是肌肉注射易于操作,也便于较大量的注射质粒DAN,最近有人将基因重组质粒吸附在金粉颗粒上,然后用基因枪将其导入皮内,据说即使应用其他接种方法250-2500分之一的重组质粒DNA剂量,也能激发相似的免疫应答。此外用25%高渗蔗糖溶液、1%甘油、5%PEG、0.5% SPAM等预处理接种部位,随后再接种质粒DNA,可以提高免疫效果。
人们十分关心基因疫苗的安全性问题,担心外源基因导入体内后,与细胞染色体基因组发生整合,从而导致细胞转化、癌变在内的种种负面后果,但迄今尚未发现有整合的证据。作为病毒基因疫苗方面的危险性不会高于各病毒的自然感染。
基因疫苗目前存在的主要问题是引发的免疫应答反应,包括体液免疫和细胞免疫,经常达不到预期水平。关键之一是外源目的基因真正进入细胞特别是细胞核的量少,不能表达出足够量的免疫原。学者们正在这方面开展探索性基础研究,希望提高外源基因的入核水平。有人报道,将阳离子多肽共价结合于双链DNA上,有助于其进入核内,应用SV401抗原的核定位信号多肽,也有提高DNA向核内转移的作用。, 百拇医药
一、重组活载体疫苗
应用无病原性或弱毒疫苗株病毒和细菌,例如痘病毒、鸡痘病毒、火鸡疱疹病毒、伪狂犬病毒、大哩腺病毒以及卡介苗分枝杆菌和沙门氏菌弱毒疫苗株等作为载体,插入外源性保护基因,构建重组活载体疫苗。由于外源基因已是载体病毒或载体细菌“本身”成分,其所引起的免疫应答,常不低于完整病毒或细菌相应成分引起免疫强度,而且各成分之间一般不发生相互干扰或排拆现象,又因可以同时插入几个外源基因,一苗防多病,故是当前认为最有开发和应用前景的动物疫苗。
二、基因缺失疫苗
构建缺失某一毒力基因的所谓基因缺失疫苗,亦有明显进展,其突出优点是疫苗株不易返祖而重新获得毒力,例如牛传染性气管炎病毒和伪狂犬病毒的tK基因缺失疫苗,后者已经进行野外试验。猴和人免疫缺陷病毒的nef基因缺失株和牛白血病病毒的px基因缺失株亦已构建成功。由于基因缺失疫苗株病毒的复制能力并不明显降低,其所导致的免疫应答不低于常规的弱毒活疫苗。最近构建成功双基因缺失疫苗,也就是缺失2个与毒力有关的基因,这样的疫苗株当然更为安全。基因缺失疫苗的生产工艺与相应的弱毒疫苗相同,在生产过程和生产成本上不存在问题,关键是实际应用中的安全性。因为病毒在自然状态下可能与野毒株发生重组,或者发生核酸修补,使疫苗株原来缺失的基因恢复而重新获得毒力。目前已有这方面的报道。有的基因缺失疫苗对孕畜和仔畜的毒力偏高。
, 百拇医药
三、基因疫苗
基因疫苗又称核酸疫苗,是将编码某种抗原蛋白的基因置于真核表达元件的控制之下,构成重组质粒DNA,将其直接导入动物机体内,通过宿主细胞的转录翻译系统合成抗原蛋白,从而诱导宿主产生对该抗原蛋白的免疫应答,以达到预防和治疗疾病的目的。重组质粒DNA在细胞内表达的多肽抗原与宿主的MHCI和MHCⅡ类分子结合后,提呈给免疫活性细胞(ICC),诱导免疫反应。许多研究者将不同病原的保护性抗原基因直接导入动物体内,引起特异性免疫应答,并已在一些疾病如流感、狂犬病、乙肝、艾滋病,牛疱疹病毒感染以及结核病和疟疾等取得初步结果。
基因疫苗具有一些明显的优点:
①基因疫苗在接种后,蛋白抗原在宿主细胞内表达,加工处理过程与病原的自然感染相似,抗原提呈过程也相同,因而可以诱导产生细胞和体液免疫;②外源基因在体内存在较长时间,不断表达外源蛋白,持续给免疫系统提供刺激,因此能够刺激产生较强和较持久的免疫应答;③基因疫苗具有共同的理化特性,因此可以将含有不同抗原基因的质粒混合起来进行联合免疫;④质粒载体没有免疫原性,因此可以反复使用。
, 百拇医药
抗原基因可以是单个基因,或具有协同保护功能的一组基因。一般以pBR322或pUC质粒为基本骨架,带有细菌复制子、真核细胞启动子和Poly(A)加尾信号,有的还含有增强子。
基因疫苗可作肌肉、皮下、皮内、腹腔内和滴鼻接种。目前认为横纹肌是唯一能高效摄取并表达外源基因的组织,但是肌肉内的ICC很少,提呈给淋巴细胞的效率低。皮肤内具有许多ICC,包括:淋巴细胞、巨噬细胞作树突状细胞。皮肤的郎格汉斯(Langerhans)细胞在接触抗原后能有效激活T淋巴细胞,因此认为皮内注射是最理想的接种途径。但是肌肉注射易于操作,也便于较大量的注射质粒DAN,最近有人将基因重组质粒吸附在金粉颗粒上,然后用基因枪将其导入皮内,据说即使应用其他接种方法250-2500分之一的重组质粒DNA剂量,也能激发相似的免疫应答。此外用25%高渗蔗糖溶液、1%甘油、5%PEG、0.5% SPAM等预处理接种部位,随后再接种质粒DNA,可以提高免疫效果。
人们十分关心基因疫苗的安全性问题,担心外源基因导入体内后,与细胞染色体基因组发生整合,从而导致细胞转化、癌变在内的种种负面后果,但迄今尚未发现有整合的证据。作为病毒基因疫苗方面的危险性不会高于各病毒的自然感染。
基因疫苗目前存在的主要问题是引发的免疫应答反应,包括体液免疫和细胞免疫,经常达不到预期水平。关键之一是外源目的基因真正进入细胞特别是细胞核的量少,不能表达出足够量的免疫原。学者们正在这方面开展探索性基础研究,希望提高外源基因的入核水平。有人报道,将阳离子多肽共价结合于双链DNA上,有助于其进入核内,应用SV401抗原的核定位信号多肽,也有提高DNA向核内转移的作用。, 百拇医药