Cajal间质细胞的功能与疾病
西安交通大学第二医院消化科 陕西省西安市 710004
项目负责人 齐惠滨西安交通大学第二医院消化科 陕西省西安市 710004
Tel. 0086-29-7262029, 7231758, Fax. 0086-29-7231758
Email.qihuibin123@163.net
收稿日期 2000-10-10 接受日期 2000-10-12
主题词 Cajal间质细胞;胃肠活动;胃肠疾病;神经调节剂;免疫组织化学
齐惠滨, 罗金燕. Cajal间质细胞的功能与疾病. 世界华人消化杂志,2001;9(3):325-328
Cajal间质细胞是肠神经系统的一种特殊类型的神经细胞,在控制胃肠道运动中起着重要的作用. 1893年,西班牙神经解剖学家Santiago Ramon y Cajal首先对此类细胞作了较详细的描述,此后人们称之为 Cajal间质细胞(interstitial cells of Cajal, ICC). 现基本明确,ICC在三个方面起作用:胃肠道平滑肌活动的起搏;推进电活动的传播;调节神经递质. 现综述ICC的形态、结构、鉴别、发育、功能和与疾病的关系.
1 形态和超微结构
在光镜下ICC的特征是核大,卵圆形,核周胞质少,2~5个长的突起,使ICC形状呈纺锤状或星状. ICC的超微结构特征因种属和在肠中位置不同而有差异[1-3]. 人类ICC的特征是发达的光面内质网,丰富的中间丝,没有肌球蛋白丝,无数的腔洞,一个多变的基板,许多线粒体,致密体,致密带和内陷的卵圆形的细胞核[4-8]. ICC与其他ICC之间,ICC与其他类型细胞之间依靠中间型(intermediate-type)连接或浆膜的紧密对合(close apposition)连接[4,5,7]. 人类ICC通常被描述为肌样体样的外形,但是缺乏肌球蛋白丝,而犬的小肠和大肠的ICC用免疫细胞化学方法显示有肌球蛋白丝[9,10]. 在犬回肠肠肌间神经丛的ICC的特征是胞体有数个长的突起,核占胞体的大部分,分散的异染色质靠近核膜,Golgi体,粗面和光面内质网,腔洞在突起中更常见,基板零散或却如,存在肌动蛋白和中间丝,微管,密集的线粒体,在非神经节区,ICC胞体间隔100μm~300μm[11]. 鼠胃环肌层内ICC的特征是有许多腔洞和电子致密胞质丰富的线粒体和大的缝隙连接. ICC分为二种类型:第一类型细胞核大,卵圆形,异染色体分布在周边,电子致密胞质含丰富的线粒体,粗面内质网,Golgi体,中间丝分布在核周和细胞突起,腔洞,粗面内质网的池和不清楚的基板可见,最突出的特征是许多大的缝隙连接,存在于同型的ICC之间,ICC与平滑肌细胞之间,或者二种类型的ICC之间. 第二类型细胞核大,卵圆形,胞质电子致密物比邻近平滑肌细胞或第一类型ICC少,发达的Golgi体和粗面内质网,粗面内质网的池通常扩张并含有絮状物,无基板,这型细胞通过大的缝隙连接与第一类型ICC或平滑肌细胞连接,通过紧密对合与曲张体相连[12].
各种组织化学方法用于胃肠道ICC染色,最常用亚甲蓝活体染色. 这种技术被Cajal应用,以后又被其他作者开发应用. 其他的组织化学染色包括锌-锇酸(zinc/osmic acid,ZIO)或Champy-Maillet方法[13-16],嗜银染色,碱性蕊香红-123(rhodamine 123),一种线粒体标记物[17],NADH-黄递酶组织化学[18]和霍乱毒素亚单位b标记[19],亲脂染料Dil活体染色[20,21]等,但是这些方法均缺乏特异性. 近10年来,用免疫组化研究ICC. 有作者用抗体对抗神经胶质蛋白S-100, 还有作者应用许多抗体对抗神经元特定的蛋白,神经肽,神经胶质,和中间丝蛋白,试图确定ICC的特定的组织学标记物. 虽然有些作者报告非特异性烯醇化酶标记的细胞突起用以鉴定ICC,但是神经成分也被染色. 其他的免疫组化研究包括c-GMP免疫反应[22,23]和一氧化氮合酶免疫反应[24]. Torihashi et al[10]做超微结构研究并且用免疫细胞化学对抗几种平滑肌成分,为了对犬近端结肠的ICC进行鉴别和分类. 然而,从这些研究来看,未发现对ICC特异的免疫细胞化学标记物,各种ICC的鉴别仍然依靠超微结构检查[14]. 近来,许多作者[25-28]发现鼠小肠和结肠表达原癌基因(c-kit), 抗体对抗基因产物(c-kit蛋白)用来标记这个种属的ICC. 1996年Komuro et al[29]研究显示豚鼠小肠肠肌间神经丛ICC表达c-kit,提示c-kit标记ICC. 1997年Burns et al[30]用c-kit免疫组化方法研究标记豚鼠胃肠道ICC,结论提示用c-kit免疫组化方法似乎是一种优秀的,有选择性的标记豚鼠胃肠道ICC的方法,在光镜水平标记的这些细胞提供一种研究ICC分布,密度,ICC之间和ICC与其他类型细胞的关系的机会. ICC在其他种属也有c-kit表达. 在人类,c-kit免疫组化方法越来越多地用于胃肠道ICC和与ICC有关的疾病的研究,例如1999年Wester et al[31]用c-kit免疫组化方法显示人类胎儿小肠的ICC,Kenny et al[32]研究人类小肠ICC的发育. 1998年Yamataka et al[33]用c-kit免疫组化方法显示婴儿慢性原发性假性肠梗阻的ICC分布异常,2000年Hagger et al[34]用此方法研究Chagas巨结肠的ICC, He et al[35]研究慢性便秘患者的ICC.
2 ICC在胃肠中的分布和发育
2.1 ICC在胃肠中的分布 ICC在胃肠中的分布因种属的不同而不同. 在人类ICC位于胃肠的许多区域[36-41]. 在食管平滑肌发现ICC样细胞. 在胃ICC有区域的差别,胃底的ICC很少,仅在环肌层发现. 胃体和胃窦有许多ICC,形成二个网,一个网在环肌层,另一个网在肠肌间神经丛,此外,在胃窦还有一个额外的粘膜下网[42]. 在小肠ICC与Auerbash神经丛有关,位于神经束网中,它们由Auerbash神经丛的神经成分支配,扩展到平滑肌的二层,在平滑肌细胞之间和穿过隔膜[4]. 位于深肌丛的ICC在环肌的外部分的内带,分支穿过环肌最内层,也在粘膜下缘发现[5]. 在大部分的小肠环肌层,Auerbash神经丛类型ICC在外层和主要的肌间隔膜中发现,深肌丛类型ICC仅分散在大部分环肌[8]. 在结肠,ICC在肌间平面的肌鞘内发现[43]. 在环肌层的粘膜下缘,发现的ICC与内层平滑肌细胞有关,但是形态不同[6,7]. 在一个研究中,ICC只在右半结肠发现[6]. 但是在第二个研究中,ICC在升结肠,横结肠和乙状结肠的粘膜下层,在这些部位ICC也在环肌和主要的肌间隔膜发现[7]. 人类结肠的ICC组织与其他哺乳动物也不同. 在不同种属结肠各段粘膜下层ICC密度变异很大[44]. 在豚鼠[30],从食管上端至食管下括约肌上2cm, ICC稀疏地分布在横纹肌内,ICC也分布食管下括约肌,密度比横纹肌内大. 在胃底,ICC存在于环肌和纵肌内,密度很高,这些细胞通过胃体和胃窦,密度逐渐减少. 在胃体,ICC除了存在于环肌和纵肌内,还存在于环肌与纵肌的肌间空间,肠肌神经丛水平. 在肠肌神经丛水平,ICC密度沿胃纵轴距离而增加. 在胃窦,ICC存在于环肌和纵肌内,还丰富存在于环肌与纵肌的肌间空间,肠肌神经丛水平. 在小肠(回肠),ICC存在于肠肌神经丛和深肌丛. 深肌丛位于环肌膜的内层和较厚的外层之间. 在盲肠,ICC密度在环肌层最高,在纵肌中也可见. 在近端结肠,ICC存在于:沿环肌的粘膜下表面; 在环肌层内; 沿环肌的肠肌丛面; 近端结肠. 在远端结肠,ICC分布与近端结肠相似,只缺乏近端结肠.
2.2 ICC的发育 ICC表达c-kit,依靠基因产物,Kit,酪氨酸激酶的信号发展和维持表型[28,45-47]. Kit是一种跨膜蛋白,带有一个细胞外的受体区和一个细胞内的酪氨酸激酶域. 与干细胞因子(stem cell factor, SCF),一种自然的配基结合,激活酪氨酸激酶功能,引起Kit自动磷酸化,在激酶产生高度亲和力的结合位点,能结合和激活几种第二信号分子[48]. 正常情况下,SCF是膜结合的,于是需要Kit信号的细胞必须与存在SCF的细胞有密切的联系. 在鼠胚胎9d,ICC的前体开始表达c-kit mRNA,到胚胎12d时,用免疫组化技术能分辨出Kit蛋白,在胚胎15d,Kit阳性细胞被包裹在正在发育的小肠周围,这些细胞也表达平滑肌的标记物[45,47]. 在胚胎15d~18d,决定细胞谱系:一些Kit阳性细胞变成肠肌间神经丛区域的ICC (ICC of the myenteric plexus, IC-MY,小肠未来的起搏细胞),其他的Kit阳性前体失去表达c-kit,变成纵肌细胞[45]. 如果在胚胎15d把小肠片段取下来,做器官培养,功能性的ICC在5d发育,提示Kit信号所必须的物质是肠壁内部的[46]. 如果培养含有中和Kit的抗体,ICC就不能发育. 在SI/SId突变体,只产生可溶的SCF,因为IC-MY不能正常发育[49,50],所以膜结合性的SCF(野生型)是ICC发育的关键[51,52]. 因此,Kit信号是必须的,①决定变成ICC的谱系,②ICC形态和功能的发育,③出生后维持ICC的表型[28,46]. Ward et al[53]为了确定肠神经元是否是ICC发育所必须的,他们用缺乏肠大部分神经元的鼠,ICC分布用Kit免疫荧光法,ICC的功能由细胞内电记录决定,结果显示ICC在胃肠的分布正常,在刚出生鼠胃和小肠无神经节的肌肉,细胞内记录显示正常的慢波活动. 定量PCR显示SCF在有或无肠神经元表达相似. 结果提示肠神经元不是功能性ICC发育必须的,先于ICC发育的环肌层可能是SCF的来源,SCF是ICC发育所必须的. 在人类肠道,从胚胎9wk~17wk开始,c-Kit抗体(ICC的标记物)和蛋白基因产物9.5(神经组织的标记物)的免疫反应存在于不同的细胞群,ICC的分布因胚胎时期和在肠中的位置不同而不同,ICC网在生后以区域特定方式继续发育成熟[32]. 关于人类肠ICC胚胎起源仍然不清楚. 有人支持基质源性学说[54,55],有人认为来源于神经嵴,目前倾向基质源性学说[56].
3 ICC的功能
ICC有三个主要功能:胃肠道平滑肌活动的起搏[57,58];推进电活动的传播;调节神经递质[59-61]. 可能有其他的功能[62],例如,免疫调节,生长,修复和纤维化. ICC这些其他的功能应进一步研究. 哺乳动物肠显示电活动波,根据研究的肠段不同,其特征性频率在每分钟6~12个周期[27,63]. 在消化间期,在慢波上伴有相应的蠕动收缩,这个活动在消化间期起着清除肠腔内容物的作用,这种活动被进食打断. 不管是新鲜分离的ICC,还是培养的ICC都显示膜电位的摆动,它是由于Ca2+电导引起,比如,电压依赖性Ca2+通道的激活或关闭,这个特性是早期认为ICC有起搏作用的证据[63] 在肌肉层慢波活动依靠功能性ICC网的存在. 在犬结肠,慢波在环肌层的粘膜下表面(ICC的主要位置)产生. 当粘膜下层切除后,慢波存在于肌条,但是不在大部分的环肌层[64]. 用亚甲蓝和光照选择性地损害粘膜下层的ICC,导致选择性的慢波活动消失[65]. 支持ICC是慢波的起源,推进慢波的传播. 膜电位慢波产生是ICC的内在特征[66]. 对成年鼠小肠的ICC进行分离和培养,用制霉菌素穿孔膜片钳技术,ICC显示自发的电压波动,不能被超极化或者L-型Ca2+通道阻滞剂破坏,节律活动在室温频率13.9±11.0周期/min,幅度13.4mV±11.2mV,在膜电位从-20mV至-70mV时. 同一培养的平滑肌细胞在阈电位-35mV以上只产生电压敏感的动作电位,膜电位产生对L-型Ca2+通道阻滞剂不敏感的慢波是ICC独特的内在特征. 培养的鼠小肠ICC能产生自发的电节律[67]. 其他支持ICC有起搏作用的证据来自用抗体直接对抗c-kit蛋白的实验[27,28]. 当中和c-kit的抗体注入刚出生的动物数天,肠c-kit免疫活性消失,肠平滑肌活动不正常[27,28,68]. 进一步,胚胎和新生体缺乏电节律,直到c-kit阳性细胞出现[45]. c-kit表达的突变体阐明了ICC的功能[27,63,69]. 鼠属中的白点鼠(white-spotting, W)和人类称为斑点病的低色素疾病都与c-kit有关. 许多W鼠可产生自发的变异,完全或部分地阻断c-kit蛋白表达. 完全地阻断c-kit表达的变异是致命的,纯合子(W/W)在子宫内死亡. 然而,鼠还有点变异,例如Wv,它们不能完全破坏受体的表达. Wv/Wv纯合子或者W/Wv杂合体失去电慢波节律,有肠平滑肌功能异常. 人类出生时伴有斑点病通常发展为先天性巨结肠. SCF的变异,称为Steel变异,也阐明了ICC在肠运动中的作用[63]. 典型的Steel(Sl)变异代表编码SCF的基因域完全却失,纯合子(Sl/Sl)不能存活,因为严重的贫血. 然而,非致命的变异,象Sl-dickie(Sld)和杂合体,象Sl/Sld保留一些c-kit信号活动[70]. 这些动物的ICC组织学有异常,并且肠平滑肌的电和收缩类型也有异常[71].
人胃的平均慢波电位频率为3次/min. 不同种属其慢波电位频率不同. 在任何情况下,全胃记录到的频率是一致的,每天平均频率几乎没有变化. 这种周期性恒定不变的频率是由于胃有一个支配胃电的“起搏点(pacemaker)”存在. 早在1889年Cpenchowski就提出了胃电的起搏点问题. 1898年Cannon最先用X线发现胃蠕动波由胃中部开始,向幽门传播. 现已证明人的胃起搏区位于胃体中部上1/3的区域,此处的内在电节律比胃的其他部位要高,并证明该区域有起搏点细胞存在. 现已有充分的资料证明,这些起搏细胞是位于纵环肌交接部位和内层环肌粘膜下一侧的ICC,可以产生节律. 在起搏区域,ICC把电节律传给平滑肌细胞. 这一节律活动的每一个收缩波都以0.5cm/s~4cm/s的速度向胃的远端传布. 关于小肠慢波电位的细胞起源,现已有充分的资料证明,ICC存在于胃肠纵肌与环肌之间,是小肠慢波电位的起搏者和传导者. ICC与纵环二层平滑肌形成紧密电的接点,有着广泛的神经支配. ICC可能由肠神经系统的神经递质介导其效应. 胃肠起搏是用外源性电刺激来抑制异位或异常胃肠电节律,恢复自主节律,其基本原理是,存在于胃肠道各部的“起搏点”(pacemaker)可被外加的不同频率的电流所“驱动”,犹如心脏起搏一样. Bellahsene et al用植入胃起搏器方法治疗由于迷走神经切除加给予胰高糖素所致的胃排空障碍,胰高糖素诱发的慢波节律紊乱,电刺激使胃的电活动恢复正常. Qian et al[72]在犬动物实验中发现采用胃电起搏可抑制由阿托品诱发的胃慢波节律紊乱,恢复自主节律,使固体食物的排空加速. 目前体内胃肠起搏和体外胃肠起搏的研究都处于实验阶段,有待于进一步探索,可望成为治疗胃轻瘫,假性肠梗阻等胃肠功能紊乱的一种有效手段.
4 与ICC有关的人类疾病
已知的与ICC有关的人类疾病是胃肠运动性疾病和感染[73]:斑点病的先天性巨结肠, Chagasic巨结肠, 获得性巨结肠, 慢性便秘, Hirschsprung病[63,74,75],婴儿增生性幽门狭窄,假性肠梗阻,可能的贲门失弛缓症,和溃疡性结肠炎[76]. 斑点病的先天性巨结肠和Chagasic巨结肠肠壁ICC明显减少[34]. 获得性巨结肠结肠环肌层腔内面侧的ICC缺乏和神经网破坏[77]. 慢性便秘患者乙状结肠的ICC减少[35]. Hirschsprung病是多基因疾病,导致肠神经系统无神经节和运动紊乱. 与Hirschsprung病有关的变异基因包括:① RET原癌基因,它能防止从神经嵴来的神经节细胞的移行[78],② 内皮因子-3(endothelin-3, ET-3)基因[79]和ET-3受体基因[79]. ICC在Hirschsprung病是存在的,但是形态有异常,表明在这种多基因疾病,紊乱的ICC功能伴随无神经节症[63,80]. 也许ICC是神经节神经元移行和完全发育所需要的[81],或者相反,或者胚胎基质的某种缺陷不仅损害神经嵴细胞的移行,而且损害ICC的分化. 婴儿增生性幽门狭窄是新生儿相对常见的疾病,其特征是幽门括约肌区的增生[80,82]. 病理学的异常包括肠神经系统的异常和神经元一氧化氮合酶的减少或者缺乏. c-Kit免疫活性的ICC在纵肌和大多数增生的肌肉中缺乏. 这种肌异常疾病中ICC的确切作用尚不清楚. 假性肠梗阻患者受累肠段的ICC分布异常或ICC数目减少[73,83,84]. 近来,在W/Wv变异鼠食管下括约肌一氧化氮依赖的抑制性神经递质异常引起人类贲门失弛缓时ICC作用的可能性[85], 这需要证实. 在严重的溃疡性结肠炎,结肠ICC的超微结构异常[76]. 这些异常在结肠炎的肠运动紊乱中的作用仍然需要证实. 在结肠炎,ICC的组织学异常也可能继发于大剂量皮质甾类治疗,而不是炎症. 在体外用药物诱发的肠炎引起慢波特征的改变,抑制时相性收缩,部分是由于损害ICC所致[86].
总之,Cajal间质细胞在胃肠道运动中起着重要的作用,有三个主要功能:胃肠道平滑肌活动的起搏;推进电活动的传播;调节神经递质. 已知的与ICC有关的人类疾病是胃肠运动性疾病和感染:斑点病的先天性巨结肠, Chagasic巨结肠, 获得性巨结肠, 慢性便秘,Hirschsprung病,婴儿增生性幽门狭窄,假性肠梗阻,可能的贲门失弛缓症,和溃疡性结肠炎. 胃运动障碍性疾病如糖尿病性胃轻瘫[87]斑点病的先天性巨结肠, Chagasic 巨结肠, 获得性巨结肠, 慢性便秘, Hirschsprung病[63,74,75],婴儿增生性幽门狭窄,假性肠梗阻,可能的贲门失弛缓症,和溃疡性结肠炎[76]. 胃电节律紊乱综合征等常存在胃电节律紊乱,主要为胃动过速,其次为节律紊乱及胃动过缓,这种胃电节律紊乱与ICC之间的关系有待研究. 目前体内胃肠起搏和体外胃肠起搏的研究都处于实验阶段,有待于进一步探索,可望成为治疗胃轻瘫,假性肠梗阻等胃肠功能紊乱的一种有效手段.
5 参考文献
1 Komuro T. Comparative morphology of interstitial cells of Cajal: ultrastructural characterization. Microsc Res Tech,1999;47:267-285
2 Faussone-Pellegrini MS, Thuneberg L. Guide to the identification of interstitial cells of Cajal. Microsc Res Tech, 1999;47:248-266
3 Komuro T, Seki K, Horiguchi K. Ultrastructural characterization of the interstitial cells of Cajal. Arch Histol Cytol,
1999;62:295-316
4 Rumessen JJ, Thuneberg L. Interstitial cells of Cajal in human small intestine. Ultrastructural identification and organization
betweeen the main smooth muscle layers. Gastroenterology, 1991;100(5 pt 1):1417-1431
5 Rumessen JJ, Mikkelsen HB, Thuneberg L. Ultrastructure of interstitial cells of Cajal associated with deep muscular plexus of
human small intestine. Gastroenterology,1992;102:56-68
6 Faussone-Pellegrini MS, Cortesini C, Pantalone D. Neuromuscular structures specific to the submucosal border of the human
colonic circular muscle layer. Can J Physiol Pharmacol,1990;68:1437-1446
7 Rumessen JJ, Peters S, Thuneberg L. Light-and electron microscopical studies of interstitial cells of Cajal and muscle cells at
the submucosal border of human colon. Lab Invest,1993;68:481-495
8 Rumessen JJ, Mikkelsen HB, Qvortrup K, Thuneberg L. Ultrastructure of interstitial cells of Cajal in circular muscle of human
small intestine. Gastroenterology, 1993;104:343-350
9 Torihashi S, Kobayashi S, Gerthoffer WT, Sanders KM. Interstitial cells in deep muscular plexus of canine smalll intestine may
be specialized smooth muscle cells. Am J Physiol,1993;265:G638-G645
10 Torihashi S, Gerthoffer WT, Kobayashi S, Sanders KM. Identification and classification of interstitial cells in the canine proximal colon
by ultrastructure and immunocytochemistry. Histochemistry,1994;101:169-138
11 Daniel EE, Wang YF, Cayabyab FS. Role of gap junctions in structural arrangements of interstitial cells of Cajal and canine ileal
smooth muscle. Am J Physiol,1998;274(6 part 1):G1125-G1141
12 Ishikawa K, Komuro T, Hirota S, Kitamura Y. Ultrastructural identification of the c-kit-expressing interstial cells in the rat stomach:
a comparision of control and Ws/Ws mutant rats. Cell Tissue Res, 1997;289:137-143
13 Kobayashi S. The structure of the autonomic and apparatus in the guinea-pig small intestine and the problem of the interstitial cells
of Cajal. Acta Med Biol, 1990;38:103-127
14 Christensen J. A commentary on the morphological identification of interstitial cells of Cajal in the gut. J Auton Nerv
Syst,1992;37:75-88
15 Zhou DS, Komuro T. Ultrastructure of the zinc iodide-osmic acid staining cells in guinea pig small intestine. J Anat,
1995;187:481-485
16 童卫东,张胜本,张连阳,蔡文琴,杜文华,牟江洪. 大鼠结肠肌间神经丛Cajal 间质细胞的形态. 解剖学杂志,1999;22:316-318
17 Ward SM,Burke EP,Sanders KM.Use of rhodamine-123 to label and lesion interstitial cells of Cajal in canine colonic circular
muscle. Anat Embryol, 1990;182:215-224
18 Xue C, Ward SM, Shuttleworth CW, Sanders KM. Identification of interstitial cells in canine proximal colon using NADH
diaphorase histochemistry. Histochemistry, 1993;99:373-384
19 Anderson CR, Edwards SL. Subunit of cholera toxin labels interstitial cells of Cajal in the gut of rat and mouse.
Histochemistry, 1993;100:457-464
20 Hanani M, Louzon V, Miller SM, Faussone-Pellegrini MS. Visualization of interstitial cells of Cajal in the mouse colon by vital
staining. Cell Tissue Res, 1998;292:275-282
21 Hanani M, Belzer V, Rich A, Faussone-Pellegrini SM. Visualization of interstitial cells of Cajal in living, intact tissues. Microsc
Res, 1999;47:336-343
22 Shuttleworth CW, Xue C, Ward SM, de Vente J, Sanders KM. Immunohistochemical localization of 3', 5'-cyclic
guanosine monophosphate in the canine proximal colon: responses to nitric oxide and electrical stimulation of enteric
inhibitory neurons. Neuroscience, 1993;56:513-522
23 Young HM, McConalogue K, Furness JB, de Vente J. Nitric oxide targets in the guinea-pig intestine identified by induction of
cyclic GMP immunoreactivity. Neuroscience, 1993;55:583-596
24 Xue C, Pollock J, Schmidt HHHW, Ward SM, Sanders KM. Expression of nitric oxide synthase by interstitial cells of the canine
proximal colon. J Auton Nerv Syst, 1994;49:1-14
25 Maeda H, Yamagata A, Nishikawa S, Yoshinaga K, Kobayashi S, Nishi K, Nishikawa S. Requirement of c-kit for development of
intestinal pacemaker system. Development, 1992;116:369-375
26 Ward SM, Burns AJ, Torihashi S, Sanders KM. Mutation of the proto-oncogene c-kit blocks development of intestinal cells
and electrical rhythmicity in murine intestine. J Physiol, 1994;480:91-97
27 Huizinga JD, Thuneberg L, Kluppel M, Malysz J, Mikkelsen HB, Bernstein A. W/kit gene required for interstitial cells of Cajal and
for intestinal pacemaker activity. Nature, 1995;373:347-349
28 Torihashi S, Ward SM, Nishikawa SI, Nishi K, Kobayashi S, Sanders KM. c-kit-dependent development of interstitial cells and
electrical activity in the murine gastrointestinal tract. Cell Tissue Res, 1995;280:97-111
29 Komuro T, Zhou DS. Anti-c-kit protein immunoreactive cells corresponding to the interstitial cells of Cajal in the guinea-pig
small intestine. J Auton Nerv Syst, 1996;61:169-174
30 Burns AJ, Herbert TM, Ward SM, Sanders KM. Interstitial cells of Cajal in the guinea-pig gastrointestinal tract as revealed by
c-Kit immunohistochemistry. Cell Tissue Res, 1997;290:11-20
31 Wester T, Eriksson L, Olsson Y, Olsen L. Interstitial cells of Cajal in the human fetal small bowel as shown by
c-kit immunohistochemistry. Gut, 1999;44:65-71
32 Kenny SE, Connell G, Woodward MN, Lloyd DA, Gosden CM, Edgar DH, Vaillant C. Ontogeny of interstitial cells of Cajal in the
human intestine. J Pediatr Surg, 1999;34:1241-1247
33 Yamataka A, Ohshiro K, Kobayashi H, Lane GJ, Yamataka T, Fujiwara T, Sunagawa M, Miyano T. Abnormal distribution of
intestinal pacemaker (C-KIT-positive) cells in an infant with chronic idiopathic intestinal pseudoobstruction.
J Pediatr Surg, 1998;33:859-862
34 Hagger R, Finlayson C, Kahn F, De Oliveira R, Chimelli I, Kumar D. A deficiency of interstitial cells of Cajal in Chagasic megacolon.
J Auton Nerv Syst, 2000;80:108-111
35 He CL, Burgart L, Wang L, Pemberton J, Young-Fadok T, Szurszewski J, Farrugia G. Decreased interstitial cell of Cajal volume
in patients with slow-transit constipation. Gastroenterology, 2000;118:14-21
36 Hagger R, Finlayson C, Jeffrey I, Kumar D. Role of the interstitial cells of Cajal in the control of gut motility.
Br J Surg, 1997;84:445-450
37 Mazzia C, Porcher C, Jule Y, Christen MO, Henry M. Ultrastructural study of relationships between c-kit immunoreactive
interstitial cells and other cellular elements in the human colon. Histochem Cell Biol, 2000;113:401-441
38 Torihashi S, Horisawa M, Watanabe Y. c-Kit immunoreactive interstitial cells in the human gastrointestinal tract. J Auton Nerv
Syst, 1999;75:38-50
39 Hagger R, Gharaie S, Finlayson C, Kumar D. Distribution of the interstitial cells of Cajal in the human anorectum.
J Auton Nerv Syst, 1998;73:75-79
40 Hagger R, Gharaie S, Finlayson C, Kumar D. Regional and transmural density of interstitial cells of Cajal in human colon and
rectum. Am J Physiol, 1998;275(6 Pt 1):G1309-G1316
41 Romert P, Mikkelsen HB. c-kit immunoreactive interstitial cells of Cajal in the human small and large intestine. Histochem
Cell Biol, 1998;109:195-202
42 Faussone-Pellegrini MS, Pantalone D, Cortesini C. An ultrastructural study of the interstitial cells of Cajal of the human stomach.
J Submicrosc Cytol Pathol, 1989;21:439-460
43 Faussone-Pellegrini MS, Pantalone D, Cortesini C. Smooth muscle cells, interstitial cells of Cajal and myenteric plexus interrelationships
in the human colon. Acta Anat, 1990;139:31-44
44 Christensen J, Rick GA, Lowe LS. Distributions of interstitial cells of Cajal in stomach and colon of cat, dog, ferret, opossum,rat, guinea pig and rabbit. J Auton Nerv Syst, 1992;37:47-56
45 Torihashi S, Ward SM, Sanders KM. Development of c-kit-positive cells and the onset of electrical rhythmicity in murine small
intestine. Gastroenterology, 1997;112:144-155
46 Ward SM, Harney SC, Bayguinov JR, McLaren GJ, Sanders KM. Development of electrical rhythmicity in the murine
gastrointestinal tract is specifically encoded in the tunica muscularis. J Physiol(Lond), 1997;505(pt 1):241-258
47 Kluppel M, Huizinga JD, Malysz J, Bernstein A. Developmental origin and Kit-dependent development of the interstitial cells of Cajal
in the mammalian small intestine. Dev Dyn, 1998;211:60-71
48 Fantl WJ, Johnson DE, Williams LT. Signaling by receptor tyrosine kinases. Annu Rev Biochem, 1993;62:453-478
49 Ward M, Burns AJ, Torihashi S, Harney SC, Sanders KM. Impaired development of interstitial cells and intestinal electrical rhythmicity
in steel mutants. Am J Physiol, 1995;269:C1577-1585
50 Mikkelsen HB, Malysz J, Huizinga JD, Thuneberg L. Action potential generation, Kit receptor immunohistochemistry and morphology
of steel-Dickie(SI/SId) mutant mouse small intestine. Neurogastroenterol Motil, 1998;10:11-26
51 Brannan CI, Lyman SD, Williams DE, Eisenman J, Anderson DM, Cosman D, Bedell MA, Jenkins NA, Copeland NG. Steel
-Dickie mutation encodes c-kit ligand lacking transmembrane and cyto-plasmic domains. Proc Natl Acad Sci USA,
1991;88:4671-4674
52 Flanagan JG, Chan DC, Leder P. Transmembrane form of the kit ligand growth factor is determined by alternate splicing and is
missing in the SId mutant. Cell, 1991;64:1025-1035
53 Ward SM, Ordog T, Bayguinov JR, Horowitz B, Epperson A, Shen L, Westphal H, Sanders KM. Development of interstitial cells of
Cajal and pacemaking in mice lacking enteric nerves. Gastroenterology, 1999;117:584-594
54 Lecoin L, Gabella G, Le Douarin N. Origin of the c-kit-positive interstitial cells in the avian bowel. Development,
1996;122:725-733
55 Young HM, Ciampoli D, Southwell BR. Origin of interstitial cells of Cajal in the mouse intestine. Dev Biol, 1996;180:97-107
56 Young HM. Embrological origin of interstitial cells of Cajal. Microsc Res Tech, 1999;47:303-308
57 Huizinga JD, Robinson TL, Thomsen L. The search for the origin of rhythmicity in intestinal contraction; from tissue to single
cells. Neurogastroenterol Motil, 2000;12:3-9
58 Thomsen L, Robinson TL, Lee JC, Farraway LA, Hughes MJ, Andrews DW, Huizinga JD. Interstitial cells of Cajal generate
a rhythmic pacemaker current. Nat Med, 1998;4:848-851
59 Ward SM, Beckett EA, Wang X, Baker F, Khoyi M, Sanders KM. Interstitial cells of Cajal mediate cholinergic neurotransmission
from enteric motor neurons. J Neurosci, 2000;20:1393-1403
60 Wang XY, Sanders KM, Ward SM. Intimate relationship between interstitial cells of Cajal and enteric nerves in the guinea-pig
small intestine. Cell Tissue Res, 1999;295:247-256
61 Burns AJ, Lomax AE, Torihashi S, Sanders KM, Ward SM. Interstitial cells of Cajal mediate inhibitory neurotransmission in
the stomach. Proc Natl Acad Sci USA, 1996;93:12008-12013
62 Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB. Myofibroblasts. Ⅱ. Intestinal subepithelial myofibroblasts.
Am J Physiol, 1999;277(Cell Physiol. 46):C183-C201
63 Sanders KM. A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal
tract. Gastroenterology, 1996;111:492-515
64 Ward SM, Sanders KM. Pacemaker activity in septal structures of canine colonic circular muscle. Am J Physiol,
1990;259:G264-G273
65 Liu LWC, Thuneberg L, Huizinga JD. Selective lesioning of interstitial cells of Cajal by methylene blue and light leads to loss of
slow waves. Am J Physiol, 1994;266:G485-G496
66 Lee JC, Thuneberg L, Berezin I, Huizinga JD. Generation of slow waves in membrane potential is an intrinsic property of interstitial
cells of Cajal. Am J Physiol, 1999;277(2 Pt 1):G409-423
67 Koh SD, Sanders KM, Ward SM. Spontaneous electrical rhythmicity in cultured interstitial cells of Cajal from the murine
small intestine. J Physiol, 1998;513(Pt 1):203-213
68 Ogawa M, Matsuzaki Y, Nishikawa S, Hayashi S, Kunisada T, Sudo T, Kina T, Nakauchi H. Expression and function of c-kit
in hemopoietic progenitor cells. J Exp Med, 1991;174:63-71
69 Isozaki K, Hirota S, Nakama A, Miyagawa J, Shinomura Y, Xu Z, Nomura S, Kitamura Y. Disturbed intestinal movement, bile reflex
to the stomach, and deficiency of c-kit-expressing cells in Ws/Ws mutant rats. Gastroenterology, 1995;109:456-464
70 Brannan CI, Lyman SD, Williams DE, Eisenman J, Anderson DM, Cosman D, Bedell NA, Jenkins NA, Copeland NG. Steel-Dickie
mutation encodes a c-kit ligand lacking transmembrane and cytoplasmic domains. Proc Natl Acad Sci USA,
1991;88:4671-4674
71 Ward SM, Burns AJ, Torihashi S, Harney SC, Sanders KM. Impaired development of interstitial cells and intestinal electrical
rhythmicity in steel mutants. Am J Physiol, 1995;269:C1577-C1585
72 Qian L, Lin X, Chen JD. Normalization of atropine-induced postprandial dysrhythmias with gastric pacing. Am J Physiol,
1999;276(2 Pt 1):G378-G392
73 Huizinga JD. Neural injury, repair and adaptation in the GI tract. Ⅳ. Pathophysiology of GI motility related to interstitial cells of
Cajal. Am J Physiol, 1998;275:G381-G386
74 Vanderwinden JM, Rumessen JJ, Liu H, Descamps D, De Laet MH, Vanderhaeghen JJ. Interstitial cells of Cajal in human colon and
in Hirschsprung's disease. Gastroenterology, 1996;111:901-910
75 Nemeth L, Maddur S, Puri P. Immunolocalization of the gap junction protein Connexin43 in the interstitial cells of Cajal in the
normal and Hirschsprung's disease bowel. J Pediatr Surg, 2000;35:823-828
76 Rumessen JJ. Ultrastructure of interstitial cells of Cajal at the colonic submuscular border in patients with ulcerative
colitis. Gastroenterology, 1996;111:1447-1455
77 Faussone-Pellegrini MS, Fociani P, Buffa R, Basilisco G. Loss of interstitial cells and a fibromuscular layer on the luminal side of
the colonic circular muscle presenting as megacolon in an adult patient. Gut, 1999;45:775-779
78 Pelet A, Geneste O, Edery P, Pasini A, Chappuis S, Atti T, Munnich A, Lenoir G, Lyonnet S, Billaud M. Various mechanisms
cause RET-mediated signaling defects in Hirschsprung's disease. J Clin Invest, 1998;101:1415-1423
79 Robertson K, Mason I, Hall S. Hirschsprung's disease: genetic mutations in mice and men. Gut,1997;41:436-441
80 Vanderwinden JM, Liu H, De Laet MH, Vanderhaeghen JJ. Study of the interstitial cells of Cajal in infantile hypertrophic
pyloric stenosis. Gastroenterology, 1996;111:279-288
81 Leibl MA, Ota T, Woodward MN, Kenny SE, Lloyd DA, Vaillant CR, Edgar DH. Expression of endothelin 3 by mesenchymal cells
of embryonic mouse caecum. Gut, 1999;44:246-252
82 Vanderwinden JM, Liu H, Menu R, Conreur JL, De Laet MH, Vanderhaeghen JJ. The pathology of infantile hypertrophic
pyloric stenosis after healing. J Pediatr Surg, 1996;31:1530-1534
83 Campbell F, Hewlett B, Ho J, Huizinga J, Riddell RH. Interstitial cells of Cajal (ICC) are absent or deranged in
intestinal pseudo-obstruction (Abstract). Lab Invest, 1998;78:61A
84 Isozaki K, Hirota S, Miyagawa JI, Taniguchi M, Shinomura Y, Matsuzawa Y. Deficiency of c-kit+ cells in patients with a
myopathic form of chronic idiopathic intestinal pseudo-obstruction. Am J Gastroenterology, 1997;92:332-334
85 Ward SM, Morris G, Reese L, Wang XY, Sanders KM. Interstitial cells of Cajal mediate enteric inhibitory neurotransmission in the
lower esophageal and pyloric sphincters. Gastroenterology, 1998;115:314-329
86 Lu G, Qian X, Berezin I, Telford GL, Huizinga JD, Sarna SK. Inflammation modulates in vitro colonic myoelectric and
contractile activity and interstitial cells of Cajal. Am J Physiol, 1997;273(6 Pt 1):G1233-1245
87 齐惠滨, 罗金燕, 戴信刚, 王学勤. 糖尿病性胃轻瘫的动力学研究. 新消化病学杂志, 1997;5:661-662, http://www.100md.com(齐惠滨 罗金燕)
项目负责人 齐惠滨西安交通大学第二医院消化科 陕西省西安市 710004
Tel. 0086-29-7262029, 7231758, Fax. 0086-29-7231758
Email.qihuibin123@163.net
收稿日期 2000-10-10 接受日期 2000-10-12
主题词 Cajal间质细胞;胃肠活动;胃肠疾病;神经调节剂;免疫组织化学
齐惠滨, 罗金燕. Cajal间质细胞的功能与疾病. 世界华人消化杂志,2001;9(3):325-328
Cajal间质细胞是肠神经系统的一种特殊类型的神经细胞,在控制胃肠道运动中起着重要的作用. 1893年,西班牙神经解剖学家Santiago Ramon y Cajal首先对此类细胞作了较详细的描述,此后人们称之为 Cajal间质细胞(interstitial cells of Cajal, ICC). 现基本明确,ICC在三个方面起作用:胃肠道平滑肌活动的起搏;推进电活动的传播;调节神经递质. 现综述ICC的形态、结构、鉴别、发育、功能和与疾病的关系.
1 形态和超微结构
在光镜下ICC的特征是核大,卵圆形,核周胞质少,2~5个长的突起,使ICC形状呈纺锤状或星状. ICC的超微结构特征因种属和在肠中位置不同而有差异[1-3]. 人类ICC的特征是发达的光面内质网,丰富的中间丝,没有肌球蛋白丝,无数的腔洞,一个多变的基板,许多线粒体,致密体,致密带和内陷的卵圆形的细胞核[4-8]. ICC与其他ICC之间,ICC与其他类型细胞之间依靠中间型(intermediate-type)连接或浆膜的紧密对合(close apposition)连接[4,5,7]. 人类ICC通常被描述为肌样体样的外形,但是缺乏肌球蛋白丝,而犬的小肠和大肠的ICC用免疫细胞化学方法显示有肌球蛋白丝[9,10]. 在犬回肠肠肌间神经丛的ICC的特征是胞体有数个长的突起,核占胞体的大部分,分散的异染色质靠近核膜,Golgi体,粗面和光面内质网,腔洞在突起中更常见,基板零散或却如,存在肌动蛋白和中间丝,微管,密集的线粒体,在非神经节区,ICC胞体间隔100μm~300μm[11]. 鼠胃环肌层内ICC的特征是有许多腔洞和电子致密胞质丰富的线粒体和大的缝隙连接. ICC分为二种类型:第一类型细胞核大,卵圆形,异染色体分布在周边,电子致密胞质含丰富的线粒体,粗面内质网,Golgi体,中间丝分布在核周和细胞突起,腔洞,粗面内质网的池和不清楚的基板可见,最突出的特征是许多大的缝隙连接,存在于同型的ICC之间,ICC与平滑肌细胞之间,或者二种类型的ICC之间. 第二类型细胞核大,卵圆形,胞质电子致密物比邻近平滑肌细胞或第一类型ICC少,发达的Golgi体和粗面内质网,粗面内质网的池通常扩张并含有絮状物,无基板,这型细胞通过大的缝隙连接与第一类型ICC或平滑肌细胞连接,通过紧密对合与曲张体相连[12].
各种组织化学方法用于胃肠道ICC染色,最常用亚甲蓝活体染色. 这种技术被Cajal应用,以后又被其他作者开发应用. 其他的组织化学染色包括锌-锇酸(zinc/osmic acid,ZIO)或Champy-Maillet方法[13-16],嗜银染色,碱性蕊香红-123(rhodamine 123),一种线粒体标记物[17],NADH-黄递酶组织化学[18]和霍乱毒素亚单位b标记[19],亲脂染料Dil活体染色[20,21]等,但是这些方法均缺乏特异性. 近10年来,用免疫组化研究ICC. 有作者用抗体对抗神经胶质蛋白S-100, 还有作者应用许多抗体对抗神经元特定的蛋白,神经肽,神经胶质,和中间丝蛋白,试图确定ICC的特定的组织学标记物. 虽然有些作者报告非特异性烯醇化酶标记的细胞突起用以鉴定ICC,但是神经成分也被染色. 其他的免疫组化研究包括c-GMP免疫反应[22,23]和一氧化氮合酶免疫反应[24]. Torihashi et al[10]做超微结构研究并且用免疫细胞化学对抗几种平滑肌成分,为了对犬近端结肠的ICC进行鉴别和分类. 然而,从这些研究来看,未发现对ICC特异的免疫细胞化学标记物,各种ICC的鉴别仍然依靠超微结构检查[14]. 近来,许多作者[25-28]发现鼠小肠和结肠表达原癌基因(c-kit), 抗体对抗基因产物(c-kit蛋白)用来标记这个种属的ICC. 1996年Komuro et al[29]研究显示豚鼠小肠肠肌间神经丛ICC表达c-kit,提示c-kit标记ICC. 1997年Burns et al[30]用c-kit免疫组化方法研究标记豚鼠胃肠道ICC,结论提示用c-kit免疫组化方法似乎是一种优秀的,有选择性的标记豚鼠胃肠道ICC的方法,在光镜水平标记的这些细胞提供一种研究ICC分布,密度,ICC之间和ICC与其他类型细胞的关系的机会. ICC在其他种属也有c-kit表达. 在人类,c-kit免疫组化方法越来越多地用于胃肠道ICC和与ICC有关的疾病的研究,例如1999年Wester et al[31]用c-kit免疫组化方法显示人类胎儿小肠的ICC,Kenny et al[32]研究人类小肠ICC的发育. 1998年Yamataka et al[33]用c-kit免疫组化方法显示婴儿慢性原发性假性肠梗阻的ICC分布异常,2000年Hagger et al[34]用此方法研究Chagas巨结肠的ICC, He et al[35]研究慢性便秘患者的ICC.
2 ICC在胃肠中的分布和发育
2.1 ICC在胃肠中的分布 ICC在胃肠中的分布因种属的不同而不同. 在人类ICC位于胃肠的许多区域[36-41]. 在食管平滑肌发现ICC样细胞. 在胃ICC有区域的差别,胃底的ICC很少,仅在环肌层发现. 胃体和胃窦有许多ICC,形成二个网,一个网在环肌层,另一个网在肠肌间神经丛,此外,在胃窦还有一个额外的粘膜下网[42]. 在小肠ICC与Auerbash神经丛有关,位于神经束网中,它们由Auerbash神经丛的神经成分支配,扩展到平滑肌的二层,在平滑肌细胞之间和穿过隔膜[4]. 位于深肌丛的ICC在环肌的外部分的内带,分支穿过环肌最内层,也在粘膜下缘发现[5]. 在大部分的小肠环肌层,Auerbash神经丛类型ICC在外层和主要的肌间隔膜中发现,深肌丛类型ICC仅分散在大部分环肌[8]. 在结肠,ICC在肌间平面的肌鞘内发现[43]. 在环肌层的粘膜下缘,发现的ICC与内层平滑肌细胞有关,但是形态不同[6,7]. 在一个研究中,ICC只在右半结肠发现[6]. 但是在第二个研究中,ICC在升结肠,横结肠和乙状结肠的粘膜下层,在这些部位ICC也在环肌和主要的肌间隔膜发现[7]. 人类结肠的ICC组织与其他哺乳动物也不同. 在不同种属结肠各段粘膜下层ICC密度变异很大[44]. 在豚鼠[30],从食管上端至食管下括约肌上2cm, ICC稀疏地分布在横纹肌内,ICC也分布食管下括约肌,密度比横纹肌内大. 在胃底,ICC存在于环肌和纵肌内,密度很高,这些细胞通过胃体和胃窦,密度逐渐减少. 在胃体,ICC除了存在于环肌和纵肌内,还存在于环肌与纵肌的肌间空间,肠肌神经丛水平. 在肠肌神经丛水平,ICC密度沿胃纵轴距离而增加. 在胃窦,ICC存在于环肌和纵肌内,还丰富存在于环肌与纵肌的肌间空间,肠肌神经丛水平. 在小肠(回肠),ICC存在于肠肌神经丛和深肌丛. 深肌丛位于环肌膜的内层和较厚的外层之间. 在盲肠,ICC密度在环肌层最高,在纵肌中也可见. 在近端结肠,ICC存在于:沿环肌的粘膜下表面; 在环肌层内; 沿环肌的肠肌丛面; 近端结肠. 在远端结肠,ICC分布与近端结肠相似,只缺乏近端结肠.
2.2 ICC的发育 ICC表达c-kit,依靠基因产物,Kit,酪氨酸激酶的信号发展和维持表型[28,45-47]. Kit是一种跨膜蛋白,带有一个细胞外的受体区和一个细胞内的酪氨酸激酶域. 与干细胞因子(stem cell factor, SCF),一种自然的配基结合,激活酪氨酸激酶功能,引起Kit自动磷酸化,在激酶产生高度亲和力的结合位点,能结合和激活几种第二信号分子[48]. 正常情况下,SCF是膜结合的,于是需要Kit信号的细胞必须与存在SCF的细胞有密切的联系. 在鼠胚胎9d,ICC的前体开始表达c-kit mRNA,到胚胎12d时,用免疫组化技术能分辨出Kit蛋白,在胚胎15d,Kit阳性细胞被包裹在正在发育的小肠周围,这些细胞也表达平滑肌的标记物[45,47]. 在胚胎15d~18d,决定细胞谱系:一些Kit阳性细胞变成肠肌间神经丛区域的ICC (ICC of the myenteric plexus, IC-MY,小肠未来的起搏细胞),其他的Kit阳性前体失去表达c-kit,变成纵肌细胞[45]. 如果在胚胎15d把小肠片段取下来,做器官培养,功能性的ICC在5d发育,提示Kit信号所必须的物质是肠壁内部的[46]. 如果培养含有中和Kit的抗体,ICC就不能发育. 在SI/SId突变体,只产生可溶的SCF,因为IC-MY不能正常发育[49,50],所以膜结合性的SCF(野生型)是ICC发育的关键[51,52]. 因此,Kit信号是必须的,①决定变成ICC的谱系,②ICC形态和功能的发育,③出生后维持ICC的表型[28,46]. Ward et al[53]为了确定肠神经元是否是ICC发育所必须的,他们用缺乏肠大部分神经元的鼠,ICC分布用Kit免疫荧光法,ICC的功能由细胞内电记录决定,结果显示ICC在胃肠的分布正常,在刚出生鼠胃和小肠无神经节的肌肉,细胞内记录显示正常的慢波活动. 定量PCR显示SCF在有或无肠神经元表达相似. 结果提示肠神经元不是功能性ICC发育必须的,先于ICC发育的环肌层可能是SCF的来源,SCF是ICC发育所必须的. 在人类肠道,从胚胎9wk~17wk开始,c-Kit抗体(ICC的标记物)和蛋白基因产物9.5(神经组织的标记物)的免疫反应存在于不同的细胞群,ICC的分布因胚胎时期和在肠中的位置不同而不同,ICC网在生后以区域特定方式继续发育成熟[32]. 关于人类肠ICC胚胎起源仍然不清楚. 有人支持基质源性学说[54,55],有人认为来源于神经嵴,目前倾向基质源性学说[56].
3 ICC的功能
ICC有三个主要功能:胃肠道平滑肌活动的起搏[57,58];推进电活动的传播;调节神经递质[59-61]. 可能有其他的功能[62],例如,免疫调节,生长,修复和纤维化. ICC这些其他的功能应进一步研究. 哺乳动物肠显示电活动波,根据研究的肠段不同,其特征性频率在每分钟6~12个周期[27,63]. 在消化间期,在慢波上伴有相应的蠕动收缩,这个活动在消化间期起着清除肠腔内容物的作用,这种活动被进食打断. 不管是新鲜分离的ICC,还是培养的ICC都显示膜电位的摆动,它是由于Ca2+电导引起,比如,电压依赖性Ca2+通道的激活或关闭,这个特性是早期认为ICC有起搏作用的证据[63] 在肌肉层慢波活动依靠功能性ICC网的存在. 在犬结肠,慢波在环肌层的粘膜下表面(ICC的主要位置)产生. 当粘膜下层切除后,慢波存在于肌条,但是不在大部分的环肌层[64]. 用亚甲蓝和光照选择性地损害粘膜下层的ICC,导致选择性的慢波活动消失[65]. 支持ICC是慢波的起源,推进慢波的传播. 膜电位慢波产生是ICC的内在特征[66]. 对成年鼠小肠的ICC进行分离和培养,用制霉菌素穿孔膜片钳技术,ICC显示自发的电压波动,不能被超极化或者L-型Ca2+通道阻滞剂破坏,节律活动在室温频率13.9±11.0周期/min,幅度13.4mV±11.2mV,在膜电位从-20mV至-70mV时. 同一培养的平滑肌细胞在阈电位-35mV以上只产生电压敏感的动作电位,膜电位产生对L-型Ca2+通道阻滞剂不敏感的慢波是ICC独特的内在特征. 培养的鼠小肠ICC能产生自发的电节律[67]. 其他支持ICC有起搏作用的证据来自用抗体直接对抗c-kit蛋白的实验[27,28]. 当中和c-kit的抗体注入刚出生的动物数天,肠c-kit免疫活性消失,肠平滑肌活动不正常[27,28,68]. 进一步,胚胎和新生体缺乏电节律,直到c-kit阳性细胞出现[45]. c-kit表达的突变体阐明了ICC的功能[27,63,69]. 鼠属中的白点鼠(white-spotting, W)和人类称为斑点病的低色素疾病都与c-kit有关. 许多W鼠可产生自发的变异,完全或部分地阻断c-kit蛋白表达. 完全地阻断c-kit表达的变异是致命的,纯合子(W/W)在子宫内死亡. 然而,鼠还有点变异,例如Wv,它们不能完全破坏受体的表达. Wv/Wv纯合子或者W/Wv杂合体失去电慢波节律,有肠平滑肌功能异常. 人类出生时伴有斑点病通常发展为先天性巨结肠. SCF的变异,称为Steel变异,也阐明了ICC在肠运动中的作用[63]. 典型的Steel(Sl)变异代表编码SCF的基因域完全却失,纯合子(Sl/Sl)不能存活,因为严重的贫血. 然而,非致命的变异,象Sl-dickie(Sld)和杂合体,象Sl/Sld保留一些c-kit信号活动[70]. 这些动物的ICC组织学有异常,并且肠平滑肌的电和收缩类型也有异常[71].
人胃的平均慢波电位频率为3次/min. 不同种属其慢波电位频率不同. 在任何情况下,全胃记录到的频率是一致的,每天平均频率几乎没有变化. 这种周期性恒定不变的频率是由于胃有一个支配胃电的“起搏点(pacemaker)”存在. 早在1889年Cpenchowski就提出了胃电的起搏点问题. 1898年Cannon最先用X线发现胃蠕动波由胃中部开始,向幽门传播. 现已证明人的胃起搏区位于胃体中部上1/3的区域,此处的内在电节律比胃的其他部位要高,并证明该区域有起搏点细胞存在. 现已有充分的资料证明,这些起搏细胞是位于纵环肌交接部位和内层环肌粘膜下一侧的ICC,可以产生节律. 在起搏区域,ICC把电节律传给平滑肌细胞. 这一节律活动的每一个收缩波都以0.5cm/s~4cm/s的速度向胃的远端传布. 关于小肠慢波电位的细胞起源,现已有充分的资料证明,ICC存在于胃肠纵肌与环肌之间,是小肠慢波电位的起搏者和传导者. ICC与纵环二层平滑肌形成紧密电的接点,有着广泛的神经支配. ICC可能由肠神经系统的神经递质介导其效应. 胃肠起搏是用外源性电刺激来抑制异位或异常胃肠电节律,恢复自主节律,其基本原理是,存在于胃肠道各部的“起搏点”(pacemaker)可被外加的不同频率的电流所“驱动”,犹如心脏起搏一样. Bellahsene et al用植入胃起搏器方法治疗由于迷走神经切除加给予胰高糖素所致的胃排空障碍,胰高糖素诱发的慢波节律紊乱,电刺激使胃的电活动恢复正常. Qian et al[72]在犬动物实验中发现采用胃电起搏可抑制由阿托品诱发的胃慢波节律紊乱,恢复自主节律,使固体食物的排空加速. 目前体内胃肠起搏和体外胃肠起搏的研究都处于实验阶段,有待于进一步探索,可望成为治疗胃轻瘫,假性肠梗阻等胃肠功能紊乱的一种有效手段.
4 与ICC有关的人类疾病
已知的与ICC有关的人类疾病是胃肠运动性疾病和感染[73]:斑点病的先天性巨结肠, Chagasic巨结肠, 获得性巨结肠, 慢性便秘, Hirschsprung病[63,74,75],婴儿增生性幽门狭窄,假性肠梗阻,可能的贲门失弛缓症,和溃疡性结肠炎[76]. 斑点病的先天性巨结肠和Chagasic巨结肠肠壁ICC明显减少[34]. 获得性巨结肠结肠环肌层腔内面侧的ICC缺乏和神经网破坏[77]. 慢性便秘患者乙状结肠的ICC减少[35]. Hirschsprung病是多基因疾病,导致肠神经系统无神经节和运动紊乱. 与Hirschsprung病有关的变异基因包括:① RET原癌基因,它能防止从神经嵴来的神经节细胞的移行[78],② 内皮因子-3(endothelin-3, ET-3)基因[79]和ET-3受体基因[79]. ICC在Hirschsprung病是存在的,但是形态有异常,表明在这种多基因疾病,紊乱的ICC功能伴随无神经节症[63,80]. 也许ICC是神经节神经元移行和完全发育所需要的[81],或者相反,或者胚胎基质的某种缺陷不仅损害神经嵴细胞的移行,而且损害ICC的分化. 婴儿增生性幽门狭窄是新生儿相对常见的疾病,其特征是幽门括约肌区的增生[80,82]. 病理学的异常包括肠神经系统的异常和神经元一氧化氮合酶的减少或者缺乏. c-Kit免疫活性的ICC在纵肌和大多数增生的肌肉中缺乏. 这种肌异常疾病中ICC的确切作用尚不清楚. 假性肠梗阻患者受累肠段的ICC分布异常或ICC数目减少[73,83,84]. 近来,在W/Wv变异鼠食管下括约肌一氧化氮依赖的抑制性神经递质异常引起人类贲门失弛缓时ICC作用的可能性[85], 这需要证实. 在严重的溃疡性结肠炎,结肠ICC的超微结构异常[76]. 这些异常在结肠炎的肠运动紊乱中的作用仍然需要证实. 在结肠炎,ICC的组织学异常也可能继发于大剂量皮质甾类治疗,而不是炎症. 在体外用药物诱发的肠炎引起慢波特征的改变,抑制时相性收缩,部分是由于损害ICC所致[86].
总之,Cajal间质细胞在胃肠道运动中起着重要的作用,有三个主要功能:胃肠道平滑肌活动的起搏;推进电活动的传播;调节神经递质. 已知的与ICC有关的人类疾病是胃肠运动性疾病和感染:斑点病的先天性巨结肠, Chagasic巨结肠, 获得性巨结肠, 慢性便秘,Hirschsprung病,婴儿增生性幽门狭窄,假性肠梗阻,可能的贲门失弛缓症,和溃疡性结肠炎. 胃运动障碍性疾病如糖尿病性胃轻瘫[87]斑点病的先天性巨结肠, Chagasic 巨结肠, 获得性巨结肠, 慢性便秘, Hirschsprung病[63,74,75],婴儿增生性幽门狭窄,假性肠梗阻,可能的贲门失弛缓症,和溃疡性结肠炎[76]. 胃电节律紊乱综合征等常存在胃电节律紊乱,主要为胃动过速,其次为节律紊乱及胃动过缓,这种胃电节律紊乱与ICC之间的关系有待研究. 目前体内胃肠起搏和体外胃肠起搏的研究都处于实验阶段,有待于进一步探索,可望成为治疗胃轻瘫,假性肠梗阻等胃肠功能紊乱的一种有效手段.
5 参考文献
1 Komuro T. Comparative morphology of interstitial cells of Cajal: ultrastructural characterization. Microsc Res Tech,1999;47:267-285
2 Faussone-Pellegrini MS, Thuneberg L. Guide to the identification of interstitial cells of Cajal. Microsc Res Tech, 1999;47:248-266
3 Komuro T, Seki K, Horiguchi K. Ultrastructural characterization of the interstitial cells of Cajal. Arch Histol Cytol,
1999;62:295-316
4 Rumessen JJ, Thuneberg L. Interstitial cells of Cajal in human small intestine. Ultrastructural identification and organization
betweeen the main smooth muscle layers. Gastroenterology, 1991;100(5 pt 1):1417-1431
5 Rumessen JJ, Mikkelsen HB, Thuneberg L. Ultrastructure of interstitial cells of Cajal associated with deep muscular plexus of
human small intestine. Gastroenterology,1992;102:56-68
6 Faussone-Pellegrini MS, Cortesini C, Pantalone D. Neuromuscular structures specific to the submucosal border of the human
colonic circular muscle layer. Can J Physiol Pharmacol,1990;68:1437-1446
7 Rumessen JJ, Peters S, Thuneberg L. Light-and electron microscopical studies of interstitial cells of Cajal and muscle cells at
the submucosal border of human colon. Lab Invest,1993;68:481-495
8 Rumessen JJ, Mikkelsen HB, Qvortrup K, Thuneberg L. Ultrastructure of interstitial cells of Cajal in circular muscle of human
small intestine. Gastroenterology, 1993;104:343-350
9 Torihashi S, Kobayashi S, Gerthoffer WT, Sanders KM. Interstitial cells in deep muscular plexus of canine smalll intestine may
be specialized smooth muscle cells. Am J Physiol,1993;265:G638-G645
10 Torihashi S, Gerthoffer WT, Kobayashi S, Sanders KM. Identification and classification of interstitial cells in the canine proximal colon
by ultrastructure and immunocytochemistry. Histochemistry,1994;101:169-138
11 Daniel EE, Wang YF, Cayabyab FS. Role of gap junctions in structural arrangements of interstitial cells of Cajal and canine ileal
smooth muscle. Am J Physiol,1998;274(6 part 1):G1125-G1141
12 Ishikawa K, Komuro T, Hirota S, Kitamura Y. Ultrastructural identification of the c-kit-expressing interstial cells in the rat stomach:
a comparision of control and Ws/Ws mutant rats. Cell Tissue Res, 1997;289:137-143
13 Kobayashi S. The structure of the autonomic and apparatus in the guinea-pig small intestine and the problem of the interstitial cells
of Cajal. Acta Med Biol, 1990;38:103-127
14 Christensen J. A commentary on the morphological identification of interstitial cells of Cajal in the gut. J Auton Nerv
Syst,1992;37:75-88
15 Zhou DS, Komuro T. Ultrastructure of the zinc iodide-osmic acid staining cells in guinea pig small intestine. J Anat,
1995;187:481-485
16 童卫东,张胜本,张连阳,蔡文琴,杜文华,牟江洪. 大鼠结肠肌间神经丛Cajal 间质细胞的形态. 解剖学杂志,1999;22:316-318
17 Ward SM,Burke EP,Sanders KM.Use of rhodamine-123 to label and lesion interstitial cells of Cajal in canine colonic circular
muscle. Anat Embryol, 1990;182:215-224
18 Xue C, Ward SM, Shuttleworth CW, Sanders KM. Identification of interstitial cells in canine proximal colon using NADH
diaphorase histochemistry. Histochemistry, 1993;99:373-384
19 Anderson CR, Edwards SL. Subunit of cholera toxin labels interstitial cells of Cajal in the gut of rat and mouse.
Histochemistry, 1993;100:457-464
20 Hanani M, Louzon V, Miller SM, Faussone-Pellegrini MS. Visualization of interstitial cells of Cajal in the mouse colon by vital
staining. Cell Tissue Res, 1998;292:275-282
21 Hanani M, Belzer V, Rich A, Faussone-Pellegrini SM. Visualization of interstitial cells of Cajal in living, intact tissues. Microsc
Res, 1999;47:336-343
22 Shuttleworth CW, Xue C, Ward SM, de Vente J, Sanders KM. Immunohistochemical localization of 3', 5'-cyclic
guanosine monophosphate in the canine proximal colon: responses to nitric oxide and electrical stimulation of enteric
inhibitory neurons. Neuroscience, 1993;56:513-522
23 Young HM, McConalogue K, Furness JB, de Vente J. Nitric oxide targets in the guinea-pig intestine identified by induction of
cyclic GMP immunoreactivity. Neuroscience, 1993;55:583-596
24 Xue C, Pollock J, Schmidt HHHW, Ward SM, Sanders KM. Expression of nitric oxide synthase by interstitial cells of the canine
proximal colon. J Auton Nerv Syst, 1994;49:1-14
25 Maeda H, Yamagata A, Nishikawa S, Yoshinaga K, Kobayashi S, Nishi K, Nishikawa S. Requirement of c-kit for development of
intestinal pacemaker system. Development, 1992;116:369-375
26 Ward SM, Burns AJ, Torihashi S, Sanders KM. Mutation of the proto-oncogene c-kit blocks development of intestinal cells
and electrical rhythmicity in murine intestine. J Physiol, 1994;480:91-97
27 Huizinga JD, Thuneberg L, Kluppel M, Malysz J, Mikkelsen HB, Bernstein A. W/kit gene required for interstitial cells of Cajal and
for intestinal pacemaker activity. Nature, 1995;373:347-349
28 Torihashi S, Ward SM, Nishikawa SI, Nishi K, Kobayashi S, Sanders KM. c-kit-dependent development of interstitial cells and
electrical activity in the murine gastrointestinal tract. Cell Tissue Res, 1995;280:97-111
29 Komuro T, Zhou DS. Anti-c-kit protein immunoreactive cells corresponding to the interstitial cells of Cajal in the guinea-pig
small intestine. J Auton Nerv Syst, 1996;61:169-174
30 Burns AJ, Herbert TM, Ward SM, Sanders KM. Interstitial cells of Cajal in the guinea-pig gastrointestinal tract as revealed by
c-Kit immunohistochemistry. Cell Tissue Res, 1997;290:11-20
31 Wester T, Eriksson L, Olsson Y, Olsen L. Interstitial cells of Cajal in the human fetal small bowel as shown by
c-kit immunohistochemistry. Gut, 1999;44:65-71
32 Kenny SE, Connell G, Woodward MN, Lloyd DA, Gosden CM, Edgar DH, Vaillant C. Ontogeny of interstitial cells of Cajal in the
human intestine. J Pediatr Surg, 1999;34:1241-1247
33 Yamataka A, Ohshiro K, Kobayashi H, Lane GJ, Yamataka T, Fujiwara T, Sunagawa M, Miyano T. Abnormal distribution of
intestinal pacemaker (C-KIT-positive) cells in an infant with chronic idiopathic intestinal pseudoobstruction.
J Pediatr Surg, 1998;33:859-862
34 Hagger R, Finlayson C, Kahn F, De Oliveira R, Chimelli I, Kumar D. A deficiency of interstitial cells of Cajal in Chagasic megacolon.
J Auton Nerv Syst, 2000;80:108-111
35 He CL, Burgart L, Wang L, Pemberton J, Young-Fadok T, Szurszewski J, Farrugia G. Decreased interstitial cell of Cajal volume
in patients with slow-transit constipation. Gastroenterology, 2000;118:14-21
36 Hagger R, Finlayson C, Jeffrey I, Kumar D. Role of the interstitial cells of Cajal in the control of gut motility.
Br J Surg, 1997;84:445-450
37 Mazzia C, Porcher C, Jule Y, Christen MO, Henry M. Ultrastructural study of relationships between c-kit immunoreactive
interstitial cells and other cellular elements in the human colon. Histochem Cell Biol, 2000;113:401-441
38 Torihashi S, Horisawa M, Watanabe Y. c-Kit immunoreactive interstitial cells in the human gastrointestinal tract. J Auton Nerv
Syst, 1999;75:38-50
39 Hagger R, Gharaie S, Finlayson C, Kumar D. Distribution of the interstitial cells of Cajal in the human anorectum.
J Auton Nerv Syst, 1998;73:75-79
40 Hagger R, Gharaie S, Finlayson C, Kumar D. Regional and transmural density of interstitial cells of Cajal in human colon and
rectum. Am J Physiol, 1998;275(6 Pt 1):G1309-G1316
41 Romert P, Mikkelsen HB. c-kit immunoreactive interstitial cells of Cajal in the human small and large intestine. Histochem
Cell Biol, 1998;109:195-202
42 Faussone-Pellegrini MS, Pantalone D, Cortesini C. An ultrastructural study of the interstitial cells of Cajal of the human stomach.
J Submicrosc Cytol Pathol, 1989;21:439-460
43 Faussone-Pellegrini MS, Pantalone D, Cortesini C. Smooth muscle cells, interstitial cells of Cajal and myenteric plexus interrelationships
in the human colon. Acta Anat, 1990;139:31-44
44 Christensen J, Rick GA, Lowe LS. Distributions of interstitial cells of Cajal in stomach and colon of cat, dog, ferret, opossum,rat, guinea pig and rabbit. J Auton Nerv Syst, 1992;37:47-56
45 Torihashi S, Ward SM, Sanders KM. Development of c-kit-positive cells and the onset of electrical rhythmicity in murine small
intestine. Gastroenterology, 1997;112:144-155
46 Ward SM, Harney SC, Bayguinov JR, McLaren GJ, Sanders KM. Development of electrical rhythmicity in the murine
gastrointestinal tract is specifically encoded in the tunica muscularis. J Physiol(Lond), 1997;505(pt 1):241-258
47 Kluppel M, Huizinga JD, Malysz J, Bernstein A. Developmental origin and Kit-dependent development of the interstitial cells of Cajal
in the mammalian small intestine. Dev Dyn, 1998;211:60-71
48 Fantl WJ, Johnson DE, Williams LT. Signaling by receptor tyrosine kinases. Annu Rev Biochem, 1993;62:453-478
49 Ward M, Burns AJ, Torihashi S, Harney SC, Sanders KM. Impaired development of interstitial cells and intestinal electrical rhythmicity
in steel mutants. Am J Physiol, 1995;269:C1577-1585
50 Mikkelsen HB, Malysz J, Huizinga JD, Thuneberg L. Action potential generation, Kit receptor immunohistochemistry and morphology
of steel-Dickie(SI/SId) mutant mouse small intestine. Neurogastroenterol Motil, 1998;10:11-26
51 Brannan CI, Lyman SD, Williams DE, Eisenman J, Anderson DM, Cosman D, Bedell MA, Jenkins NA, Copeland NG. Steel
-Dickie mutation encodes c-kit ligand lacking transmembrane and cyto-plasmic domains. Proc Natl Acad Sci USA,
1991;88:4671-4674
52 Flanagan JG, Chan DC, Leder P. Transmembrane form of the kit ligand growth factor is determined by alternate splicing and is
missing in the SId mutant. Cell, 1991;64:1025-1035
53 Ward SM, Ordog T, Bayguinov JR, Horowitz B, Epperson A, Shen L, Westphal H, Sanders KM. Development of interstitial cells of
Cajal and pacemaking in mice lacking enteric nerves. Gastroenterology, 1999;117:584-594
54 Lecoin L, Gabella G, Le Douarin N. Origin of the c-kit-positive interstitial cells in the avian bowel. Development,
1996;122:725-733
55 Young HM, Ciampoli D, Southwell BR. Origin of interstitial cells of Cajal in the mouse intestine. Dev Biol, 1996;180:97-107
56 Young HM. Embrological origin of interstitial cells of Cajal. Microsc Res Tech, 1999;47:303-308
57 Huizinga JD, Robinson TL, Thomsen L. The search for the origin of rhythmicity in intestinal contraction; from tissue to single
cells. Neurogastroenterol Motil, 2000;12:3-9
58 Thomsen L, Robinson TL, Lee JC, Farraway LA, Hughes MJ, Andrews DW, Huizinga JD. Interstitial cells of Cajal generate
a rhythmic pacemaker current. Nat Med, 1998;4:848-851
59 Ward SM, Beckett EA, Wang X, Baker F, Khoyi M, Sanders KM. Interstitial cells of Cajal mediate cholinergic neurotransmission
from enteric motor neurons. J Neurosci, 2000;20:1393-1403
60 Wang XY, Sanders KM, Ward SM. Intimate relationship between interstitial cells of Cajal and enteric nerves in the guinea-pig
small intestine. Cell Tissue Res, 1999;295:247-256
61 Burns AJ, Lomax AE, Torihashi S, Sanders KM, Ward SM. Interstitial cells of Cajal mediate inhibitory neurotransmission in
the stomach. Proc Natl Acad Sci USA, 1996;93:12008-12013
62 Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB. Myofibroblasts. Ⅱ. Intestinal subepithelial myofibroblasts.
Am J Physiol, 1999;277(Cell Physiol. 46):C183-C201
63 Sanders KM. A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal
tract. Gastroenterology, 1996;111:492-515
64 Ward SM, Sanders KM. Pacemaker activity in septal structures of canine colonic circular muscle. Am J Physiol,
1990;259:G264-G273
65 Liu LWC, Thuneberg L, Huizinga JD. Selective lesioning of interstitial cells of Cajal by methylene blue and light leads to loss of
slow waves. Am J Physiol, 1994;266:G485-G496
66 Lee JC, Thuneberg L, Berezin I, Huizinga JD. Generation of slow waves in membrane potential is an intrinsic property of interstitial
cells of Cajal. Am J Physiol, 1999;277(2 Pt 1):G409-423
67 Koh SD, Sanders KM, Ward SM. Spontaneous electrical rhythmicity in cultured interstitial cells of Cajal from the murine
small intestine. J Physiol, 1998;513(Pt 1):203-213
68 Ogawa M, Matsuzaki Y, Nishikawa S, Hayashi S, Kunisada T, Sudo T, Kina T, Nakauchi H. Expression and function of c-kit
in hemopoietic progenitor cells. J Exp Med, 1991;174:63-71
69 Isozaki K, Hirota S, Nakama A, Miyagawa J, Shinomura Y, Xu Z, Nomura S, Kitamura Y. Disturbed intestinal movement, bile reflex
to the stomach, and deficiency of c-kit-expressing cells in Ws/Ws mutant rats. Gastroenterology, 1995;109:456-464
70 Brannan CI, Lyman SD, Williams DE, Eisenman J, Anderson DM, Cosman D, Bedell NA, Jenkins NA, Copeland NG. Steel-Dickie
mutation encodes a c-kit ligand lacking transmembrane and cytoplasmic domains. Proc Natl Acad Sci USA,
1991;88:4671-4674
71 Ward SM, Burns AJ, Torihashi S, Harney SC, Sanders KM. Impaired development of interstitial cells and intestinal electrical
rhythmicity in steel mutants. Am J Physiol, 1995;269:C1577-C1585
72 Qian L, Lin X, Chen JD. Normalization of atropine-induced postprandial dysrhythmias with gastric pacing. Am J Physiol,
1999;276(2 Pt 1):G378-G392
73 Huizinga JD. Neural injury, repair and adaptation in the GI tract. Ⅳ. Pathophysiology of GI motility related to interstitial cells of
Cajal. Am J Physiol, 1998;275:G381-G386
74 Vanderwinden JM, Rumessen JJ, Liu H, Descamps D, De Laet MH, Vanderhaeghen JJ. Interstitial cells of Cajal in human colon and
in Hirschsprung's disease. Gastroenterology, 1996;111:901-910
75 Nemeth L, Maddur S, Puri P. Immunolocalization of the gap junction protein Connexin43 in the interstitial cells of Cajal in the
normal and Hirschsprung's disease bowel. J Pediatr Surg, 2000;35:823-828
76 Rumessen JJ. Ultrastructure of interstitial cells of Cajal at the colonic submuscular border in patients with ulcerative
colitis. Gastroenterology, 1996;111:1447-1455
77 Faussone-Pellegrini MS, Fociani P, Buffa R, Basilisco G. Loss of interstitial cells and a fibromuscular layer on the luminal side of
the colonic circular muscle presenting as megacolon in an adult patient. Gut, 1999;45:775-779
78 Pelet A, Geneste O, Edery P, Pasini A, Chappuis S, Atti T, Munnich A, Lenoir G, Lyonnet S, Billaud M. Various mechanisms
cause RET-mediated signaling defects in Hirschsprung's disease. J Clin Invest, 1998;101:1415-1423
79 Robertson K, Mason I, Hall S. Hirschsprung's disease: genetic mutations in mice and men. Gut,1997;41:436-441
80 Vanderwinden JM, Liu H, De Laet MH, Vanderhaeghen JJ. Study of the interstitial cells of Cajal in infantile hypertrophic
pyloric stenosis. Gastroenterology, 1996;111:279-288
81 Leibl MA, Ota T, Woodward MN, Kenny SE, Lloyd DA, Vaillant CR, Edgar DH. Expression of endothelin 3 by mesenchymal cells
of embryonic mouse caecum. Gut, 1999;44:246-252
82 Vanderwinden JM, Liu H, Menu R, Conreur JL, De Laet MH, Vanderhaeghen JJ. The pathology of infantile hypertrophic
pyloric stenosis after healing. J Pediatr Surg, 1996;31:1530-1534
83 Campbell F, Hewlett B, Ho J, Huizinga J, Riddell RH. Interstitial cells of Cajal (ICC) are absent or deranged in
intestinal pseudo-obstruction (Abstract). Lab Invest, 1998;78:61A
84 Isozaki K, Hirota S, Miyagawa JI, Taniguchi M, Shinomura Y, Matsuzawa Y. Deficiency of c-kit+ cells in patients with a
myopathic form of chronic idiopathic intestinal pseudo-obstruction. Am J Gastroenterology, 1997;92:332-334
85 Ward SM, Morris G, Reese L, Wang XY, Sanders KM. Interstitial cells of Cajal mediate enteric inhibitory neurotransmission in the
lower esophageal and pyloric sphincters. Gastroenterology, 1998;115:314-329
86 Lu G, Qian X, Berezin I, Telford GL, Huizinga JD, Sarna SK. Inflammation modulates in vitro colonic myoelectric and
contractile activity and interstitial cells of Cajal. Am J Physiol, 1997;273(6 Pt 1):G1233-1245
87 齐惠滨, 罗金燕, 戴信刚, 王学勤. 糖尿病性胃轻瘫的动力学研究. 新消化病学杂志, 1997;5:661-662, http://www.100md.com(齐惠滨 罗金燕)