当前位置: 首页 > 期刊 > 《世界华人消化杂志》 > 2001年第5期
编号:10697232
犬重症急性胰腺炎血循环障碍及血小板活化因子拮抗剂的干预
http://www.100md.com 2001年5月15日 《世界华人消化杂志》 2001年第5期
     中国人民解放军第三军医大学附属新桥医院消化内科 重庆市 400037

    夏时海,男,1971-11-23生,四川省平昌县人,汉族. 1995年泸州医学院本科毕业, 2001年第三军医大学硕士研究生毕业,医师,助教,与导师赵晓晏教授,医学博士一起主要从事重症急性胰腺炎的血循环机制的研究,发表论文5篇.

    项目负责人
夏时海, 400037, 重庆市,中国人民解放军第三军医大学附属新桥医院消化内科.

    Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China

    Correspondence to:Dr. Shi-Hai Xia, Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China

    Tel. 0086-23-65215643, 68755604

    Email. xshhcx@sina.com

    Received 2001-01-06 Accepted 2001-01-11

    Hemocirculatory disorder in dogs with severe acute pancreatitis and intervention of

    platelet activating factor antagonist


    Shi-Hai Xia, Xiao-Yan Zhao, Ping Guo and Si-Ping Da

    

    Abstract


    AIM To study the mechanism of hemocirculatory disorder in dogs with severe acute pancreatitis (SAP) and the intervention of platelet activating factor (PAF) receptor antagonist WEB2170.

    METHODS Seventeen dogs were divided randomly into three groups: normal control group (NC, n=5), severe acute pancreatitis group (SAP, n=6) and WEB2170 group (WEB, n=6). SAP models were established by injecting 5% sodium taurocholate and trypsin into the main pancreatic duct. The dogs of WEB group were injected WEB2170(5mg·kg-1)intravenously 15 minutes and 12 hours respectively after SAP induction. The changes of hemorrheologic parameters, PAF, thrmboxane A2(TXA2), prostaglandin I2 (PGI2), endothelin (ET) and nitric oxide (NO) were dynamically determined after operations.

    RESULTS In SAP group, the level of TXB2(ng·L-1), 6-Keto-PGF1α(ng·L-1), ET(ng·L-1), NO(×103ng·L-1 )and PAF(pg·L-1)in plasm was respectively 1543±635, 482±217, 484±87, 16±6 and 16.54±1.86. In NC group they were 311±130, 182±90, 100±13, 7±2 and 0.88±0.07. Those of SAP group increased more significantly than NC group (P<0.01). In SAP group, the level of low shear blood viscosity (mPas), hematocrit(%) and fibrinogen (g·L-1) was 24.6±4.2, 51.2±1.5 and 5.8±0.8, respectively; in NC group 8.6±1.6, 37.3±4.5 and 3.6±0.4. The hemorheologic parameters of SAP group were much higher than NC group (P<0.01). The PAF level of plasm (pg·L-1)and pancreatic tissue (ng·g-1) in WEB and SAP groups was 1.82±0.33, 1.58±0.2, 16.54±1.86 and 5.66±0.5 (P<0.01).

    CONCLUSION The changes of hemorheologic parameters, PAF, TXA2, PGI2, ET and NO level might play key roles in the mechanism of hemocirculatory disorder in dogs with severe acute pancreatitis (SAP). WEB2170 might be one of the important interveners.

    

    Subject headings
pancreatitis, acute necrotizing/complication; hematologic diseases/etiology; hematologic diseases/physiopathology; hemorheology; platelet activating factor/antagonists & inhibitors

    Xia SH, Zhao XY, Guo P, Da SP. Hemocirculatory disorder in dogs with severe acute pancreatitis and intervention of platelet activating factor antagonist. Shijie Huaren Xiaohua Zazhi, 2001;9(5):550-554

    

    摘要


    目的 探讨重症急性胰腺炎(SAP)血循环障碍的发病机制及其血小板活化因子拮抗剂WEB2170的干预效果.

    方法 实验用5%牛黄胆酸钠和牛胰蛋白酶混合液胰管注入,制备犬SAP模型. 分3组:正常对照组(NC,n=5)、重症急性胰腺炎组(SAP,n=6)和WEB2170干预组(WEB,n=6). WEB组于模型制备后15min和12h分别静脉注射WEB2170(5mg·kg-1). 术后动态观察各组以下指标:血液流变学、血小板活化因子(PAF)、血栓素A2(TXA2)、前列腺素I2(PGI2)、内皮素(ET)和一氧化氮(NO).

    结果 SAP组与NC组相比,TXB2(ng·L-1),6-Keto-PGF1α(ng·L-1),ET(ng·L-1),NO(×103ng·L-1),PAF(pg·L-1)分别为1543±635,482±217,484±87,16±6, 16.54±1.86和311±130,182±90,100±13, 7±2, 0.88±0.07,血液流变学低切全血粘度(mPas),红细胞压积(%),纤维蛋白原(g·L-1)分别为24.6±4.2,51.2±1.5,5.8±0.8和8.6±1.6,37.3±4.5,3.6±0.4,SAP组显著升高(P<0.01). WEB组与SAP组相比,PAF在血浆(pg·L-1)和胰腺组织(ng·g-1)中分别1.82±0.33,1.58±0.2和16.54±1.86,5.66±0.5,WEB组显著降低(P<0.01).

    结论 血液流变学、炎性递质PAF、两对血管活性物质TXA2/PGI2和ET/NO均是介导SAP胰腺血循环障碍的重要因素,血小板活化因子拮抗剂是其有效的干预措施之一.

    

    主题词
胰腺炎,急性坏死性/并发症;血液病/病因学;血液病/病理生理学;血液流变学;血小板活化因子/拮抗剂和抑制剂

    夏时海, 赵晓晏, 郭萍, 达四平. 犬重症急性胰腺炎血循环障碍及血小板活化因子拮抗剂的干预. 世界华人消化杂志,2001;9(5):550-554

    0 引言

    重症急性胰腺炎(severe acute pancreatitis, SAP)病程凶险,并发症多,死亡率高,主要是因为其发病机制未完全阐明[1,2]. 目前比较公认的四大机制[3]是胰腺胰酶自身消化学说[4]、胰腺血循环障碍学说[5]、白细胞过度激活学说[6-9]和肠道细菌移居胰腺组织学说[10-16],四者相互影响,相互作用;其中胰腺血循环障碍被认为是SAP的始动、持续和加剧损害的因素,并贯穿于SAP发生发展的整个过程[17,18];有望用一原学说来解释急性胰腺炎的发病机制. 胰腺血循环障碍主要在于血液和微血管两个方面的改变,二者相互影响,形成恶性循环,导致胰腺缺血,加重胰腺的病理变化[19,20]. 我们通过动态观察甋AP的血液流变学、关键性炎症递质PAF、两对重要的血管活性物质TXA2/PGI2和ET/NO的变化及其PAF受体拮抗剂WEB2170的干预,从而探讨血循环障碍在SAP的发病机制.

    1 材料和方法

    1.1 材料
结晶牛磺胆酸钠(Sigma公司);结晶牛胰蛋白酶(Sigma公司);淀粉酶试剂盒(Beckman公司);PAF标准品(Sigma公司);血栓素B2(TXB2)、6-酮-前列腺素F1α(6-Keto-PGF1α)、内皮素(NT)和一氧化氮(NO)代谢产物硝酸盐测定试剂盒(解放军总医院放免研究所);LG-R-80A型血液粘度测试仪、LG-B-190血细胞变形/聚集测试仪、PABER-I血小板聚集/血凝测试仪(北京世帝科学仪器公司);PAF受体拮抗剂WEB2170(Boehringer Ingelheim 公司);重庆地区健康杂种犬17只,体重10kg~15kg,雌雄不拘,购自第三军医大学实验动物中心,实验前于本院动物室驯养2wk.

    1.2 方法 随机数字表法随机分成正常对照组(NC,n=5)、SAP模型组(SAP,n=6)和WEB2170干预组(WEB,n=6). 参照吴承堂et al[21]方法制备SAP模型,术后补等渗液体(10mL·kg-1),并加强护理. 假手术组除了不注入牛磺胆酸钠和牛胰蛋白酶混合液外,其余操作同制备SAP模型;WEB2170治疗组:SAP模型制成后15min和12h分别静脉注射WEB2170(5mg·kg-1). 血清淀粉酶的测定用Becknam生化仪及试剂盒测定;血液流变学的检测于术前麻醉状态下,术后1,6,12,24h分别取血测血液流变学指标;血浆TXB2, 6-Keto-PGF1α和ET的测定以放射免疫法测定;血浆NO的测定用比色、镉还原法测定血浆硝酸盐(NO3-)水平间接反映血浆NO含量,通过计算获得结果;血浆和胰腺组织中PAF的测定用生物学检测法[22]测定血浆中的PAF;在处死狗后,立即取胰腺组织约1g,加生理盐水4mL匀浆,之后按测血浆中PAF的方法测定;胰腺组织病理学观察按常规方法进行肉眼的、光镜的和透射电镜的观察.

    统计学处理 数据以均数±标准差(x±s)表示,应用统计软件SPSS 10.0进行统计学处理.

    2 结果

    2.1 血清淀粉酶
各组急性胰腺炎各时相点血清淀粉酶见表1.

    表1 各组急性胰腺炎血清淀粉酶测定结果(×10-36.67μkat·L-1)
分组n0h1h6h12h24h
NC5849±238950.0±210942±150966±171984±174
SAP61008±1821789.5±214b6240±3430ba5950±3002ba5486±2635ba
WEB61002±1891568.5±3071853±7211703±6881479±420


    b P<0.01, vs NC组, aP<0.05, vs WEB组.

    2.2 血液流变学 各组急性胰腺炎各时相点血液流变学见表2.

    2 各组急性胰腺炎血液流变学测定结果
分组全血粘度/mPas血浆粘度/mPas红细胞压积/%红细胞

    聚集指数
纤维蛋白原/g·L-1
高切(150)中切(100)低切(8)
NC5.5±0.76.7±1.08.6±1.61.5±0.137.3±4.51.5±0.13.6±0.4
SAP1h6.1±0.2 8.9±0.812.3±1.21.6±0.144.8±1.91.5±0.14.4±0.3
6h9.6±0.9ac11.8±1.9ac24.6±4.2bc1.7±0.151.2±1.5bc1.7±0.1ac4.9±0.6ac
12h8.2±1.1a9.6±1.322.9±3.7ac1.8±0.1ac50.6±1.5a1.6±0.15.1±0.8ac
24h7.5±1.58.6±1.216.4±3.61.7±0.148.2±1.9a1.6±0.25.8±0.8bc
WEB1h5.7±1.16.6±1.18.9±1.41.6±0.137.2±3.21.8±0.23.9±0.4
6h6.3±0.98.1±1.211.9±1.81.5±0.142.9±3.81.9±0.14.1±0.3
12h6.2±0.87.6±1.110.6±1.71.5±0.143.6±3.31.8±0.24.3±0.4
24h6.5±1.07.5±0.810.4±1.61.6±0.144.7±2.41.7±0.34.3±0.5


    aP<0.05,b P<0.01, vs NC组, cP<0.05, vs WEB组.

    2.3 血浆TXB2,6-Keto-PGF1α,ET和NO各组急性胰腺炎各时相点结果 见表3.

    3 各组急性胰腺炎血浆TXB2,6-Keto-PGF1α,ET和NO(x±s,ng·L-1)
分组TXB26-Keto-PGF1αETNO(×103)
NC311±130182±90100±127±2
SAP1h889±499225±88187±2810±4
6h1543±635ab482±217b484±87ab16±6ab
12h1068±241b523±289b379±71b13±3b
24h1124±239b635±301b301±56b11±3
WEB1h785±445d222±89178±259±3
6h1001±601c501±225c212±349±4d
12h895±512d566±315c323±63c13±4c
24h1026±622c 662±352c266±37d9±3


    dP<0.05,bP<0.01, cP<0.01, vs NC组, aP<0.05, vs WEB组.

    2.4 各组急性胰腺炎各时相点血浆PAF的测定结果见表4.

    4 各组急性胰腺炎血浆PAF的测定结果(x±s,pg·L-1)
分组1h6h12h24h
NC0.76±0.051.30±0.171.06±0.130.88±0.07
SAP3.56±0.13b8.57±0.52b12.83±0.86b16.54±1.86b
WEB1.44±0.112.55±0.282.69±0.461.82±0.33


    b P<0.01, vs NC, WEB组.

    2.5 胰腺组织中PAF的含量 SAP组(5.66±0.5)ng·g-1比WEB组(1.58±0.2)ng·g-1和NC组(0.88±0.03 )ng.g-1明显增高(P<0.01),WEB组与NC组之间差异无显著性意义.

    2.6 胰腺病理学 NC组胰腺为粉红色,质软,未见异常;SAP组胰腺均有水肿、出血、坏死,4只犬钙化灶明显,三只可见血性腹水;WEB组有水肿、出血等表现,但较SAP组轻. NC组胰腺结构基本正常;SAP组胰腺间质大量红细胞,炎细胞浸润,胰内及胰周脂肪组织坏死,胰管和血管损伤严重,并可见微血栓形成;WEB组病理改变较SAP组明显减轻,罕见微血栓形成. NC组未见明显异常;SAP组胰腺细胞内线粒体肿胀,内嵴模糊、断裂或空泡样变,内质网扩张甚至溶解,粗面内质网脱颗粒,溶酶体肿胀,次级溶酶体增多,并可见酶原颗粒,其他细胞器碎片与溶酶体相融合成一大空泡样结构;WEB组胰腺细胞内线粒体肿胀,内嵴模糊,内质网扩张,未见明显的空泡样变性.

    3 讨论

    目前犬被认为是制作急性胰腺炎模型的首选动物,因为犬的消化系统发达,其胰腺的结构、重量与功能等方面与人有许多相似之处,特别适合作消化系统的实验研究[21,23]. 本结果表明,应用牛磺胆酸钠和胰蛋白酶制备杂种狗重症急性胰腺炎模型是可靠的、理想的. 血液流变学指标表明,SAP组较NC组出现显著性改变,以6h最为明显;同时病理学观察到SAP出现严重的微血管床破坏和微血栓形成. 这可能是由于胰酶、炎症递质和血管活性物质等使毛细血管通透性增加,大量血浆样液体渗入腹腔或组织间隙,从而导致血液流变学异常[24,25]. 血液流变学的异常又导致全身的血循环瘀滞,以至胰腺的微循环障碍,血液重新分布,胰腺的血液灌流量减少,使组织细胞缺血缺氧,胰腺的坏死程度进行性加重,这在SAP的发生发展机制中占有重要的地位[26-28]. 而且血液流变学对胰腺炎的病情程度估价也有一定的意义[29]. 据此提出采用扩容、活血化瘀治疗SAP以改善血循环供应.

    TXB2是TXA2的稳定、无活性代谢产物,间接反映TXA2合成量;6-Keto-PGF是PGI2的稳定代谢产物,间接反映PGI2的含量. TXA2为强烈的微血管收缩物质和血小板聚集促进剂,可诱导血小板变形、释放、分泌,引发局部及(或)全身出、凝血障碍,使胰腺组织缺血的恶性循环更加严重,细胞保护机制被摧毁[30,31];还可促使中性粒细胞活化,释放氧自由基,导致血管内皮细胞损伤[32]. PGI2具有极强的拮抗TXA2的作用,强烈抑制血小板聚集和激活,抑制白细胞激活,保护溶酶体,防止溶酶体向组织内释放[33,34]. TXA2/PGI2为一对血管张力调节物质,其平衡失调势必导致胰腺血管运动功能紊乱,微血栓形成致血管闭塞等病理变化[35,36]. 本实验结果表明犬SAP的TXB2和PGI2均较NC组显著升高,但随着病程的进展,TXA2/PGI2的比值逐渐增加,PGI2的生成相对不足. ET/NO亦为一对重要的血管张力调节物质. ET的主要作用有[37,38]:致胰腺微血管持续痉挛;通过胰腺腺泡内皮素受体,促进钙离子大量内流,损伤胰腺组织细胞;收缩冠脉血管影响心肌的血供,减少心输出量,致胰腺缺血. 但是一定浓度的ET可刺激NO增加,NO不仅有直接、强烈的舒张血管内皮细胞、调节微血管的通透性和胰腺血流等作用,而且尚可通过对ET的调节而间接影响血管张力;还可抑制血小板和白细胞粘附、聚集[39]. SAP时产生的NO,通过对抗ET的作用改善胰腺微循环,NO的产生受到抑制被认为是SAP胰腺微血管痉挛及微血管损伤的主要原因[40,41]. 我们发现犬SAP的ET和NO的变化与TXB2和PGI2的变化是一致的. 这说明TXA2/PGI2和ET/NO的平衡失调是介导SAP胰腺血循环障碍的重要因素之一,而且是同时发挥作用,二者之间的内在联系有待进一步研究.

    近年来PAF在SAP的外分泌和局部的、全身的炎症反应中被作为关键性的炎症递质[42]. PAF的主要作用[43-46]是活化血小板,促使血小板粘附聚集,血栓形成;上调粘附分子β2-整合素改变内皮细胞内骨架蛋白,引起毛细血管通透性增加,使血浆大量渗出,血液粘滞度增加,血流速度减慢;参与缺血-再灌注损伤;刺激其他血管活性物质、细胞因子及炎性递质的产生等. 而且PAF与上述的血液流变学异常和两对血管活性物质平衡失调形成恶性循环,产生一系列连锁反应和放大效应,即瀑布效应(cascade),加剧对组织器官的损伤,导致全身炎症反应综合征(SIRS),可进一步发展成多器官功能障碍综合征(MODS)和(或)多器官衰竭(MOF),甚至死亡[47,48]. 本实验结果表明犬SAP血浆中的PAF较NC组明显升高,而且随病程的进展逐渐增高;胰腺组织中腜AF也较NC组明显升高. 本结果表明特异性PAF受体拮抗剂WEB217能显著降低PAF的水平,同时也能有效降低TXA2和ET的水平,改善血液流变学指标,但对PGI2和NO的影响不明显,病理观察结果也证实WEB2170减轻了胰腺组织的病变程度. WEB2170可能主要通过降低PAF的产生和抑制PAF的活性,从而改变SAP血液流变学、调节血管活性物质TXA2/PGI2和ET/NO的平衡而改善其预后[49]. 但有研究表明特异性PAF受体拮抗剂Lexipafant不能提高动物的生成率,不能改善胰腺的组织学评分[50]. 这说明PAF受体拮抗剂的研究有待进一步深入.

    总之,犬SAP血液流变学的紊乱、炎性递质PAF的升高和两对血管活性物质TXA2/PGI2和ET/NO的平衡失调而致血循环障碍,它们相互影响,形成恶性循环,对SAP发生和发展起重要的作用;及早采取干预这些改变的措施对其预后可起积极作用. 特异性PAF受体拮抗剂WEB2170为有效的干预措施之一.

    4 REFERENCES

    1 Li XX, Chen XL. Significane of non-surgical treatment of 88 cases with severe acute pancreatitis. 

    Shijie Huaren Xiaohua Zazhi, 1999;7:719

    2 Li JC. Dispute on concept of acute severe pancreatitis. Shijie Huaren Xiaohua Zazhi, 1999;7:1072-1073

    3 Wang XP. Studies on pancreatic diseases in China: current status and prospective. Shijie Huaren Xiaohua Zazhi,2000;8:843-846

    4 Wang ZF, Pan CE, Liu SG. Advance in pathogenesis of severe acute pancreatitis. Zhonghua Putong Waike Zazhi,1999;14:144-146

    5 Wang XP, Wang GL, Wu XN, Yuan YZ, Xu JY. Significance of circulatory disturbance in acute pancreatitis. 

    Xin Xiaohuabingxue Zazhi, 1997;5:55-56

    6 Zhang QH, Cai D, Wu SQ, Jiang YF, Hou LD, Zhang YL. Changes of inflammatory mediator in acute necrotizing pancreatitis and

    effect of somatostatin analogue stilamin in rats. Zhonghua Yixue Zazhi, 1997;77:355-358

    7 Xie CG, Wang XP. Endotoxin and pancreatic damage. Shijie Huaren Xiaohua Zazhi, 2000;8:1039-1041

    8 De Beaux AC, Ross JA, Maingay JP, Fearon KCH, Carter DC. Proinflammatory cytokine release by peripheral blood mononuclear

    cells from patients with acute pancreatitis. Br J Surg, 1996;83:1071-1075

    9 Brivet FG, Emilie D, Galanaud R. Pro- and anti-inflammatory cytokines during acute severe pancreatitis: an early and

    sustained response, although unpredictable of death. Crit Care Med, 1999;27:749-755

    10 Wu CT, Li ZL. Effect of DAO on intestinal damage in acute necrotizing pancreatitis in dogs. Shijie Huaren Xiaohua

    Zazhi, 1999;7:64-65

    11 Klar E, Messmer K, Warshaw AL, Herfarth C. Pancreatic ischaemia in experimental acute pancreatitis: mechanism, significance

    and therapy. Br J Surg, 1990;77:1205-1210

    12 Wang XP, Wang BX, Wu JX, Wang GL. Effect of growth hormone on pancreatitis-associated gut barrier dysfunction in

    rats. Zhonghua Xiaohua Zazhi, 2000;20:30-33

    13 Qin RY, Zou SQ, Wu ZD, Qiu FZ, Xiao YC, Zhang L. Effect of splanchnic vascular infusion on the level of plasma endotoxin and

    the translocation of intestinal bacteria in rats with acute hemorrhage necrotic pancreatitis. 

    Zhonghua Waike Zazhi, 1997;14:44-45

    14 Li Y, Qian JQ, Qin RY, Shen M. Changes of immunocompetence in patients with acute pancreatitis. Shijie Huaren Xiaohua

    Zazhi, 2000;8:923-925

    15 Wang XP, Wang BX, Wu JX, Wu K, Wang GL. Bacterial translocation from gut in acute necrotizing pancreatitis:beneficial effect

    of growth hormone. Zhonghua Xiaohua Zazhi, 2000;20:171-174

    16 Wu CT, Li ZL, Huang XC, Zhang ZL. Effect of Chinese medicine “Qing Yi Tang” and bifidobacterium mixture on intestinal

    bacterial translocation following acute necrotizing pancreatitis. Shijie Huaren Xiaohua Zazhi, 1999;7:525-528

    17 Zhao LG, Chen YL. Experimental research on pancreatic oxygen supply and microcirculation in early stage of acute

    pancreatitis. Weixunhuanxue Zazhi, 1994;5:6-8

    18 Liu QF, Li SH. Influence of somatostation analogue on pancreatic microflow in acute hemorrhagic necrotiaing pancreatitis in rats

    and It's preventive and therapeutic effect. Weixunhuanxue Zazhi, 1996;6:3-5

    19 Klar E, Foitzik T, Buhr H, Messmer K, Herfarth C. Isovolemic hemodilution with dextran 60 as treatment of pancreatic ischemia

    in acute pancreatitis. Ann Surg, 1993;217:369-374

    20 Delaney C, McEntee G, Cottell D, McGeeney K, Fitzpatrick JM. The effect of caerulein induced pancreatitis on the

    hepatic microvasculature. Br J Surg, 1990;77:294-296

    21 Wu CT, Li ZL. Anatomy of main pancreatic duct of hybrid dog and acute pancreatic model. Shijie Huaren Xiaohua

    Zazhi, 1999;7:62-63

    22 Xu WR, Cao HC, Hu JB, Sun XC, Zhu W, Gu KL. Measurement and clinical significane of Lyso-platelet activing factor. 

    Zhongguo Shiyan Zhenduanxue, 1997;1:35-37

    23 Tang SN, Yang YC, Yang CT, Liang XZ, Zhang ZP. The pancreatic duct of dogs. Zhonghua Shiyan Waike Zazhi,

    1988;5:92-93

    24 Hou YA, Wang Y, Xue JG. Hemorheological influences of abdominal irrigation of Chinese herbs in treatment of acute

    hemorrhagic necrotic pancreatitis in rabbits. Xin Xiaohuabingxue Zazhi, 1997;5:297-298

    25 Zhou YK, Wu Y. The relationship between hemorheology and multiple organ failure of acute pancreatitis in rats. 

    Shijie Huaren Xiaohua Zazhi, 2000;8:1055-1057

    26 Wu Y, Zhou YK. The effect of somatostatin on blood rheology in murine experimental acute pancreatitis. Zhonghua

    Putongwaike Zazhi, 1999;14:427-429

    27 Liu XB, Yan LN, Zhang ZD, Tan JS, Wu HG, Wu YT. Effect of hemorheological changes on the transition of edematous

    pancreatitis to necrosis. Zhonghua Shiyan Waike Zazhi, 1997;14:211-212

    28 Wang XP, Yuan YZ, Yu JY, Liang ZJ, Pu QX, Dong H. Hemorheologic alteration in dogs with acute necrotizing pancreatitis and

    the antagonistic action of tetramethylpyrazine. Shanghai Di'er Yike Daxue Xuebao, 1995;15:281-285

    29 Wang ZF, Pan CE, Liang GG, Liu SG, Zhang M. Hemorheologic alterations in acute necrotizing pancreatitis and

    treatment. Zhongguo Weixunhuan, 1999;3:95-96

    30 Mao EQ, Zhang SD, Han TQ, Wang JC, Zhang CL. Pancreatic ischemia: a contineous injury factor in acute necrotic

    pancreatitis. Zhonghua Waike Zazhi, 1997;35:150-152

    31 Wang KH, Liao JX, Li DK, Liao XW, Qin MH. The changes of plasmic TXA2 and PGI2 of rats with severe acute pancreatitis by

    different vascular perfusion of drug of improving microcirculation. Zhonghua Shiyan Waike Zazhi, 1998;15:396-398

    32 Zhou XZ, Mao QS, Chen YQ, Shen HX. Relation between pathology and oxygea free radicals in acute pancreatitis in rats. 

    Shijie Huaren Xiaohua Zazhi, 2000;8:108-109

    33 Gong SW, Ai ZL, Zhou YK. Protedtive effects of prostacyclin on acute necrotizing pancreatitis and its renal damage in

    rats. Zhonghua Waike Zazhi, 1995;33:197-200

    34 Sun CL, Li JS, Zhu WM, Wang JJ. The influence of prostaglandin E1 on the pancreatic blood flow during acute necrotizing

    pancreatitis in rats. Zhongguo Weizhongbing Jijiu Yixue, 1998;10:154-157

    35 Gu JC, Qin ZY, Wang Y. Changes of TXA2, PGI2 in severe acute pancreatitis with pulmonic lesion in experiment rats. 

    Shijie Huaren Xiahua Zazhi, 1999;7:275

    36 Shen J, Zhao SY, Teng CH, Xiao H, Wu ZP, Wang KM, Jin JJ, Shu DX, Li Z, Wang YL, Li XQ, Zhu SH, Lu Y, Li J. The effect

    of verapamil on the pancreatic microcirculation, thromboxane and prostaglandin of plasma in acute pancreatitis in rats. 

    Zhonghua Yixue Zazhi, 1991;71:488-491

    37 Zhao HP, Wang WX, Yang CW, Shou NY. Therapeutic effects of naltrexone in plasma endotoxin in experimental acute

    hemorrhagic necrotizing pancreatitis of rats. Shijie Huaren Xiaohua Zazhi, 1999;7:400-402

    38 Ren XB, He ZP, Feng HF, Duan HC. Changes of plasma ET/NO ratio and their relationship with pancreatic blood flow during

    acute pancreatitis in rats. Disan Junyi Daxue Xuebao, 1999;21:344-346

    39 Wu CT, Li ZL. The effects of plasma nitric oxide, endothelin-1 on gut injury in acute necrotizing pancreatitis in dogs. 

    Zhongguo Putong Waike Zazhi, 1999;8:210-212

    40 Liu QH, Jin HM. Relationship between nitric oxide and endothelin and the significane of it in cardiovascukar disease. 

    Weixunhuanxue Zazhi, 1997;7:42-45

    41 Tang WB, Guo J, Tan YQ. Nitric oxide and acute pancreatitis. Zhonghua Gandan Waike Zazhi, 2000;6:398-399

    42 Bhatia M, Brady M, Shokuhi S, Christmas S, Neoptolemos JP, Slavin J. Inflammatory mediators in acute pancreatitis. 

    J Pathol, 2000;190:117-125

    43 Kingsnorth AN. Platelet-activating factor. Scand J Gastroenterol, 1996;31(Suppl 219):28-31

    44 Wang H, Tan X, Chang H, Gonzalez-Crussi F, Daniel G. Regulation of platelet-activating factor receptor gene expression in vivo

    by endotoxin, platelet-activating factor and endogenous tumour necrosis factor. Biochem J, 1997;322:603-608

    45 Roudebush WE, Wild MD, Maguire EH. Expression of the platelet-activating factor receptor in human spermatozoa: differences in

    messenger ribonucleic acid content and protein distribution between normal and abnormal spermatozoa. 

    Fertil Steril,2000;73:967-971

    46 Reinhardt JC, Cui XY, Roudebush WE. Immunofluorescent evidence of the platelet-activating factor receptor on human

    spermatozoa. Fertil Steril, 1999;71:941-942

    47 Lei RQ, Zhang SD. Significane of systemic inflammatory response in pathogenesis of acute pancreatitis. Zhonghua Gandan

    Waike Zazhi, 2000;6:76-77

    48 Ji ZH, Wang BM, Li SH, Tang Y, Ding TK, Ma YG. The role of platelet activating factor in pathogenesis of acute pancreatitis in

    dogs. Zhonghua Waike Zazhi, 1997;35:108-110

    49 Yu BW, Xiao GX, Qin XJ, Zhou LX. Effect of platelet-activing factor inhibitor WEB2170 on intestinal mocsal microcirculation

    in scalding rats. Disan Junyi Daxue Xuebao, 1999;21:329-330

    50 McKay CJ, Curran F, Sharples C, Baxter JN, Imrie CW. Prospective placebo-controlled randomized trial of lexipafant in predicted

    severe acute pancreatitis. Br J Surg, 1997;84:1239-1243, 百拇医药(夏时海 赵晓晏 郭 萍 达四平)