冷保存再灌注期间离体肝组织内氧自由基及[Ca2+]i对p38MAPK激活的影响
王雨, 田伏洲, 汤礼军, 张晓琼, 中国人民解放军成都军区总医院全军普通外科中心 四川省成都市 610083
王雨, 男, 1969-11-20生, 四川省宣汉县人, 汉族. 1993年华西医科大学本科毕业, 2001年第三军医大学博士研究生毕业, 主治医师. 主要从事肝胆及胰腺外科的研究.
项目负责人: 王雨, 610083, 四川省成都市天回镇, 中国人民解放军成都军区总医院全军普通外科中心. wangyu666@Hotmail.com
电话:028-86570353
收稿日期: 2002-03-15 接受日期: 2002-08-23
Effect of OFR and [Ca2+]i on the activation of p38 MAPK in isolated rabbit liver during cold preservation and reperfusion period
Yu Wang, Fu-Zhou Tian, Li-Jun Tang, Xiao-Qiong Zhang
Yu Wang, Fu-Zhou Tian, Li-Jun Tang, Xiao-Qiong Zhang, The General Surgery Center of PLA, General Hospital of Chengdu Military Command, Chengdu 610083, Sichuan Province, China
Correspondence to: Dr. Yu Wang, The General Surgery Center of PLA, General Hospital of Chengdu Military Command, Tian Hui Town, Chengdu 610083, Sichuan Province, China. Wangyu666@Hotmail.com
Received: 2002-03-05 Accepted: 2002-08-23
AbstractAIM: To study the effect of OFR (oxygen-derieved free radicals) and calcium on the activation of p38 MAPK in isolated rabbit liver during cold preservation and reperfusion period.
METHODS: Based on the cold preservation-reperfusion model of isolated rabbit liver, isolated livers were divided into 4 groups according to the concentration of allopurinol or verapamil in the preservation solution. Liver tissue samples were harvested at the time points of before cold preservation, at the end of cold preservation, and during reperfusion period (5 min, 10 min, 60 min, 120 min). The phosphorylation level of p38MAPK and its activity in liver tissue were detected by Western-Blotting and immunoprecipitation respectively. The content of OFR and concentration of intracellular calciumion ([Ca2+]i) were also measured by the corresponding method.
RESULTS: The content of OFR was increased to its peak value at 5 min during reperfusion period, the difference among the four groups was significant (groups A, B, C, D: 2.32±0.22, 1.82±0.15, 1.63±0.11, 1.29±0.10, P <0.05, t =2.57). At 10 min during reperfusion period, the phosphorylation level and its activity of p38MAPK reached its peak value, and there was significant difference among the four groups (Groups A, B, C, D: p38MAPK phosphorylation level (76.2±7.0, 61.4±5.9, 47.3±2.5, 37.7±3.0, P <0.05, t =2.61.Groups A, B, C, D: p38MAPK activity) 82.7±6.8, 69.7±5.2, 54.5±5.5, 41.2±3.1, P <0.05, t =2.61. Groups A, E, F,G: p38MAPK phosphorylation level (80.3±8.7, 63.3±4.2, 50.4±5.6, 39.2±5.7, P <0.05, t =2.61. Groups A, E, F, G: p38MAPK activity (80.8±8.9, 66.7±4.2, 53.7±4.1, 39.4±5.5, P <0.05, t =2.61). The peak value of OFR content and [Ca2+]i was significantly and positively correlated with the peak value of p38MAPK phosphorylation level and activity (P <0.05, ROFR=0.976, RCa=0.970).
CONCLUSION: Allopurinol can significantly inhibit the OFR content of isolated liver tissues while verapamil can significantly inhibit the overload of Ca2+ concentration of isolated liver cells. The OFR content and overload of intracellular calciumion concentration are closely related with p38MAPK activation during cold preservation and reperfusion period. So activation of p38MAPK signal pathway may be an important mechanism of OFR and Ca2+ , which play a critical role in the ischemia-reperfusion injury of donor liver.
Wang Y, Tian FZ, Tang LJ, Zhang XQ. Effect of OFR and [Ca2+]i on the activation of p38 MAPK in isolated rabbit liver during cold preservation and reperfusion period. Shijie Huaren Xiaohua Zazhi 2003;11(11):1694-1698
摘要
目的: 了解离体肝脏缺血再灌注期间氧自由基及钙离子超载是否是激活p38MAPK的因素之一,为进一步揭示肝脏缺血再灌注损伤的信号转导机制打下基础.
方法: 通过自行建立的兔离体肝脏缺血再灌注模型,根据冷保存液中别嘌呤醇浓度的不同分为A、B、C、D 4组; 根据冷保存液中维拉帕米浓度的不同又分为E、F、G、H 4组; 分别于离体前、冷保存末及再灌注5 min、10 min、60 min、120 min获取离体肝组织,分别应用免疫映迹杂交(western-blot)和免疫沉淀法测定磷酸化p38MAPK的表达及活性水平; 并进行肝组织内氧自由基(oxygen free radicals,OFR)含量的测定(A、B、C、D组); 用Fura-2/AM负载法进行肝细胞内钙离子浓度测定(A、E、F、G组).
结果: 于再灌注5 min各组离体肝组织的氧自由基水平升高至峰值,但各组两两之间存在显著性差异(A、B、C、D组: 2.32±0.22,1.82±0.15,1.63±0.11,1.29±0.10 ,P <0.05,t =2.57); 于再灌注10 min供肝组织p38MAPK磷酸化水平及活性均升高至峰值,但各组两两之间存在显著性差异(A、B、C、D组p38MAPK磷酸化水平: 76.2±7.0,61.4±5.9,47.3±2.5,37.7±3.0,P <0.05,t =2.61; A、B、C、D组p38MAPK活性水平: 82.7±6.8,69.7±5.2,54.5±5.5,41.2±3.1,P <0.05,t =2.61; A、E、F、G组p38MAPK磷酸化水平: 80.3±8.7,63.3±4.2,50.4±5.6,39.2±5.7,P <0.05,t =2.61; A、E、F、G组p38MAPK活性水平: 80.8±8.9,66.7±4.2,53.7±4.1,39.4±5.5,P <0.05,t =2.61); 再灌注5 min时氧自由基及[Ca2+]i越高的离体肝,则再灌注10 min时离体肝组织p38活性峰值越高,二者之间呈显著性相关关系. (P <0.05,ROFR=0.976,RCa=0.970)
结论: 别嘌呤醇能显著性抑制离体肝缺血再灌注期间肝组织内OFR水平,而维拉帕米能显著性抑制离体肝缺血再灌注期间肝细胞内钙离子浓度超载; 而且OFR水平及钙离子与离体肝组织p38MAPK的激活密切相关.
王雨, 田伏洲, 汤礼军, 张晓琼. 冷保存再灌注期间离体肝组织内氧自由基及[Ca2+]i对p38MAPK激活的影响. 世界华人消化杂志 2003;11(11):1694-1698
0 引言目前已发现p38 MAPK能被致炎细胞因子、砷盐、热休克、高渗、氧自由基、放射线、抗肿瘤药物等物理和化学应激激活[1-3]; 并参与了许多的疾病过程,如在急性胰腺炎[4]、肿瘤生长[5]及炎症反应[6]中均起重要作用; 供肝缺血再灌注期间也存在众多的应激因素: 缺血、缺氧、细胞胞质内游离钙离子超载[7]; 能量耗竭[8]; 微循环紊乱[9]等,有关p38MAPK在肝脏缺血再灌注期间能否被却鲜见报道[10]. 而在以上应激因素中氧自由基及钙离子在启始缺血再灌注损伤中起重要作用,因此本实验将重点研究氧自由基及钙离子对p38激酶的表达及活性的影响.
1 材料和方法
1.1 材料 高速冷冻离心机(Beckman GS-15R),紫外分光光度仪(Beckman),电泳仪、垂直电泳槽、转移槽及紫外凝胶分析系统均为Bio-Rad公司. 羊抗小鼠p38抗体、抗羊IgG/HRP、生物素Marker及抗生物素IgG/HRP(Santa-Cruz公司),兔抗小鼠p38磷酸化抗体、羊抗小鼠p38非磷酸化抗体、抗兔IgG/HRP及 p38激酶活性测定试剂盒(BioLab),PVDF膜与化学发光试剂(NEN)、别嘌呤醇、丙二醛(MDA)及超氧化物歧化酶(SOD)测试盒 (南京建成生物工程研究所),维拉帕米、RPMI-1640(GIBCO公司)、Fura-2/AM(中国医学科学院药物研究所)、乙二醇双(a-氨基乙基)醚四乙酸(EGTA)、L-谷氨酰胺(EMK 进口分装)
1.2 方法 (1)动物分组健康成年新西兰大耳白兔84只 (由四川省医药实验动物中心提供),雌雄不限,体重2.2-2.7 kg,随机均分为供体组(n =42)和受体组(n =42). 根据原位灌注液及保存液中别嘌呤醇的浓度或维拉帕米的浓度,再将供体组分为7组. A组(n =6)对照组,Euro-collins液中不加别嘌呤醇及维拉帕米; B组(n =6); Euro-collins液中加入别嘌呤醇,浓度为1 mmol/L; C组(n =6): 别嘌呤醇浓度5 mmol/L. D组(n =6): 别嘌呤醇浓度为10 mmol/L. E组(n =6): Euro-collins液中加入维拉帕米,浓度为0.6 mg/100 ml; F组(n =6): 维拉帕米浓度为1.2 mg/100 ml. G组(n =6): 维拉帕米浓度为1.8 mg/100 ml. (2) 模型制备参照Jamieson et al [11]介绍的方法进行离体组兔肝的原位灌注及切取. 将切取的离体肝称重后,立即置于盛有200 ml 4 °C Euro-collines液无菌器皿内,冷保存6 h后,再按下面方法再灌注2 h.
受体兔麻醉后(戊巴比妥钠,30 mg/kg体重,自耳缘静脉注入),自正中线切开腹壁进入腹腔. 解剖、游离左肾动、静脉. 将一根长12.0 cm,内径1.0 mm的硅胶管由左肾动脉插入腹主动脉内; 将另一根长12.0 cm、内径为3.0 mm的硅胶管自左肾静脉插入下腔静脉内,钳夹游离端备用. 将待灌注的离体肝门静脉及肝下下腔静脉分别与受体兔的左肾动脉、左肾静脉插管相连接(供肝的肝动脉、肝上下腔静脉已结扎),解除插管钳夹,恢复供肝血流. 有关上述兔肝保存,再灌注模型制备的具体方法详见文献[12]报道.
分别于离体前、保存末、再灌注5 min、10 min、60 min及120 min时,自供肝左侧叶前缘获取适量组织标本立即存放于液氮中备用,待后进行氧自由基相关指标、磷酸化p38MAPK表达及活性检测. (3) 检测指标及方法: (a) 离体肝组织氧自由基相关指标测定 A、B、C、D组进行氧自由基相关指标测定,具体操作方法按南京建成生物工程研究所提供的试剂盒说明书进行. (b) 离体肝细胞内[Ca2+]i测定 A、E、F、G组离体肝细胞[Ca2+]i的测定根据Fura-2/AM负载法进行. 具体操作方法按文献[3]报道进行. (c) 磷酸化p38MAPK的表达及活性测定提取离体肝组织总蛋白并进行蛋白定量; 然后用Western blot 方法测定p38MAPK表达水平; 用免疫沉淀法测定p38MAPK 活性. 所得图片经Bio-Rad图像分析仪进行分析. 以相应蛋白条带的平均光强度值(mean value intensity,MVI)来表示p38MAPK表达及活性的相对强度.
统计学处理 数据均采用采用均数±标准差形式,Microsoft Excel 2000统计软件进行t检验,P <0.05为差异显著; P <0.01为差异非常显著.
2 结果
2.1 离体肝组织SOD活性 离体前及冷保存末四组离体肝组织SOD活性间 无显著性差异. 再灌注5 min时,各组离体肝SOD活性显著下降,而后逐渐恢复,于再灌注120 min时,除A组外,其余三组SOD活性均基本恢复至正常水平. 再灌注期间各组离体肝组织SOD水平均表现为D>C>B>A,各时相点B、C、D组均显著性高于A组(表1).
2.2 离体肝组织MDA含量 四组离体肝组织MDA含量于离体前和冷保存末相较均无显著性差异(P >0.05). 再灌注5 min时,各组离体肝MDA含量显著升高,而后逐渐下降,于再灌注120 min时,除A组外,其余三组SOD活性均基本下降至正常水平. 再灌注期间各组离体肝组织MDA水平均表现为D
2.3 离体肝细胞[Ca2+]i变化四组离体肝细胞的[Ca2+]i于离体前和冷保存末彼此间无显著性差异(P >0.05); 再灌注期间,离体肝细胞[Ca2+]i于各时相点均有A>E>F>G组,同时相点A组[Ca2+]i水平显著高于其他三组(P <0.05或P <0.01); 各组离体肝细胞的[Ca2+]i水平均于再灌注5 min升到峰值,而后逐渐下降,到再灌注120 min时,C、D组[Ca2+]i恢复至正常水平(表3).
2.4 离体肝组织磷酸化p38蛋白的表达及活性 磷酸化p38的表达及活性于离体前和冷保存末无显著性差异; 而再灌注早期各组p38磷酸化水平均显著升高,于10 min达到峰值; 60 min及120 min时明显下降; 于再灌注期间,A、B、C、D 4组内(或A、E、F、G4组内)两两间存在显著性差异,表现为A>B>C>D (P <0.05或P <0.01)或A>E>F>G (P<0.05或P <0.01),(表4、5).
2.5 离体肝组织p38MAPK活性与氧自由基相关指标(SOD、MDA)及钙离子浓度的相关性分析 再灌注5 min及10 min MDA含量与再灌注10 min肝组织p38活性呈显著性正 相关(R5 = 0.984,P <0.05; R10 =0.976,P <0.05); 而p38活性与SOD活性呈显著性负相(R5 =-0.995,P <0.05; R10 =-0.97,P <0.05 ).
再灌注5 min时[Ca2+]i越高的离体肝,则再灌注10 min时离体肝组织p38MAPK活性峰值越高,二者间呈显著性相关关系(R5 =0.990,P <0.05 ; R10 =0.971,P <0.05 ).
表1 三组离体肝缺血再灌注期间SOD活性变化 (NU/mg-1/pr-1)
aP<0.05 vs同时相点A组; bP <0.05 vs同时相点B组; cP <0.05 vs同时相点C组.
表2 三组离体肝缺血再灌注期间MDA含量变化(nmol/mg-1/pr-1)
aP<0.05 vs同时相点A组; bP <0.05 vs同时相点B组; cP <0.05 vs同时相点C组.
表3 四组离体肝细胞缺血再灌注期间[Ca2+]i变化(nmol/L-1)
aP<0.05 vs同时相点A组; eP <0.05 vs同时相点E组; fP <0.05 vs同时相点F组.
表4 别嘌呤醇对再灌注10 min时各组离体肝p38磷酸化及活性水平的影响
aP<0.05 vs 正常对照组; bP <0.01 vs A组; cP <0.05 vs B组; dP <0.05 vs C组.
表5 维拉帕米对再灌注10 min时离体肝p38磷酸化及活性水平的影响
aP<0.05 vs 正常对照组; bP<0.01 vs A组; cP<0.05 vs E组; dP<0.01 vs F组.
3 讨论在肝移植研究领域,既往大量的研究已证实肝细胞内钙离子超载及氧自由基(OFR)过量产生是供肝低温保存-再灌注过程中组织细胞坏死性变化的两个基本病理机制[13-16]. OFR可直接与细胞膜发生脂质过氧化反应,造成膜通透性障碍; 还可直接作用于DNA,使其断裂,引发细胞凋亡[17]. 钙超载可激活细胞内磷脂酶、蛋白酶等,导致膜性结构破坏; 促进氧自由基产生,线粒体钙超载使其呼吸功能受损; 激活内源性核酸内切酶,引起DNA断裂[18]. 而且钙超载被认为是缺血-再灌注损伤的始动因素[19]. 但这二者造成组织细胞损伤的机制还未完全清楚. 已证实,别嘌呤醇能抑制OFR的产生,而维拉帕米是细胞钙通道阻滞剂,能阻断细胞内钙离子水平的升高; 这二者常用在研究中来阐明OFR及钙离子作用机制. 本部分实验用别嘌呤醇和维拉帕米的目的在于通过其抑制供肝组织OFR及钙离子水平,来探讨OFR及钙离子对p38磷酸化及活性的影响.
目前发现能激活p38的因素较多,如LPS、茴香霉素、TNF、热休克、紫外线及高渗环境等[20,21]. 一些研究显示[22-25],氧自由基可激活p38通路,参与靶细胞的损伤过程,如用H2O2刺激多种培养细胞系如Hela、Ratl、NIH3T3及PC12等均能激活p38. Zhu et al [26]发现,用柔红霉素处理新生小鼠培养心肌细胞,可导致心肌细胞p38激活,用OFR清除剂或钙离子拮抗剂后,p38活化受到明显抑制,提示OFR与钙离子参与了p38的激活. Vereker et al [27]发现,用IL-1b进行大鼠脑室内注射可引起海马区脑组织OFR升高和p38活性增高,用抗氧化剂维生素E和维生素C喂食后,p38活性增高被抑制. 这些结果提示OFR具有激活p38的作用. 本部分实验发现,供肝组织OFR含量与再灌注期间p38活性峰值间呈显著性正相关关系,用别嘌呤醇抑制OFR的产生后,供肝p38活性则显著下降,提示冷保存再灌注期间供肝组织OFR能够上调p38活性,供肝组织OFR含量越高,则p38活性也越高.
最近的文献表明,p38的激活与钙离子也密切相关[28-31]. Conrad et al [30] 发现,缺氧能引起PC12细胞p38的激活; 通过进一步的研究,发现去除培养基中的钙离子或应用钙调蛋白拮抗剂W13后,缺氧环境中PC12细胞p38激活被阻断,提示钙离子参与了缺氧引发的p38激活过程,且在p38的上游起调节作用. Lee et al [32] 发现,在PC12培养细胞,细胞内钙离子浓度升高后5 min内p38即被活化,这种钙离子对p38的激活能被钙调蛋白特异性拮抗剂W13或calmidazolium所抑制,提示钙离子激活p38具有钙调蛋白依赖性. 本部分实验结果显示,供肝细胞[Ca2+]i与再灌注期间p38活性峰值呈显著性正相关关系,用维拉帕米降低供肝细胞的[Ca2+]i水平后,供肝p38活性即显著降低,提示冷保存再灌注期间供肝细胞内钙离子能够上调p38活性,且钙离子浓度越高,p38活性越高.
本部分实验结果发现,OFR及钙离子对磷酸化p38的表达水平也有显著性影响,OFR及钙离子能上调磷酸化p38蛋白的表达,而p38的磷酸化是其产生底物酶活性的必要条件,提示OFR及钙离子上调供肝p38活性的作用至少发生在磷酸化水平,因此说明OFR及钙离子对冷保存再灌注期间供肝p38具有激活作用.
4 参考文献1 Han J, Lee JD, Bibbs L, Ulevitch RJ. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells.
Science 1994;265:808-811
2 Jiang Y, Chen C, Li Z, Guo W, Gegner JA, Lin S, Han J. Characterization of the structure and function of a new
mitogen-activated protein kinase (p38beta). J Biol Chem 1996;271: 17920-17926
3 姜勇, 刘爱华, 张琳, 赵克森. 脂多糖激活p38在诱导肿瘤坏死因子a基因表达中的作用. 中华医学杂志 1999;79:360-364
4 Fleischer F, Dabew R, Goke B, Wagner ACC. Stress kinase inhibition modulates acute experimental pancreatitis. World
J Gastroenterol 2001;7:259-265
5 毛华, 袁爱力, 赵敏芳, 赖卓胜, 张亚历, 周殿元. P38MAPK信号通路影响血管内皮细胞生长因子诱导肝癌细胞超微结构
变化. 世界华人消化杂志 2000;8:536-538
6 Meng AH, Ling YL, Zhang XP, Zhang JL. Anti-inflammatory effect of cholecystokinin and its signal transduction mechanism
in endotoxic shock rat. World J Gastroenterol 2002;8:712-717
7 Uchida M, Takemoto Y, Nagasue N, Kimoto T, Dhar DK, Nakamura T. Calcium in pig livers following ischemia and
reperfusion. J Hepatol 1994;20:714-719
8 Astarcioglu I, Adam R, Dimicoli JL, Gigou M, Patry J, Sebagh M, Bismuth H. Protective effect of alanine against graft
failure of transplanted livers from fasted donor rats. Transplant Proc 1995;27:507-508
9 Kobayashi H, Nonami T, Kurokawa T, Takeuchi Y, Harada A, Nakao A, Takagi H. Role of endogenous nitric oxide
in ischemia-reperfusion injury in rat liver. J Surg Res 1995;59:772-779
10 Kiemer AK, Kulhanek-Heinze S, Gerwig T, Gerbes AL, Vollmar AM. Stimulation of p38 MAPK by hormal preconditioning
with atrial natriuretic peptide. World J Gastroenterol 2002;8:707-711
11 Jamieson NV, Lindell S, Sundberg R, Southard JH, Belzer FO. An analysis of the components in UW solution using
the isolated perfused rabbit liver. Transplantation 1988;46:512-516
12 汤礼军, 田伏洲, 王雨, 黄大熔, 周树, 胡建中. 兔肝脏保存-再灌注损伤模型的建立及评价. 肝胆外科杂志 1998;6:123-125
13 Koeppel TA, Lehmann TG, Thies JC, Gehrcke R, Gebhard MM, Herfarth C, Otto G, Post S. Impact of N-acetylcysteine on
the hepatic microcirculation after orthotopic liver transplantation. Transplantation 1996;61:1397-1402
14 Stefanovich P, Ezzell RM, Sheehan SJ, Tompkins RG, Yarmush ML, Toner M. Effects of hypothermia on the function,membrane integrity, and cytoskeletal structure of hepatocytes. Cryobiology 1995;32:389-403
15 Gao W, Connor HD, Lemasters JJ, Mason RP, Thurman RG. Primary nonfunction of fatty livers produced by alcohol is
associated with a new antioxidant-insensitive free radical species. Transplantation 1995;59:674-679
16 Kusumoto K, Morimoto T, Minor T, Uchino J, Isselhard W. Allopurinol effects in rat liver transplantation recovery of
energy metabolism and free radical-induced damage. Eur Surg Res 1995;27:258-291
17 Shah KA, Shurey S, Green CJ. Apoptosis after intestinal ischemia-reperfusion injury: a morphological study.
Transplantation 1997;64:1393-1397
18 Mizuno N, Yoshitomi H, Ishida H, Kuromi H, Kawaki J, Seino Y, Seino S. Altered bcl-2 and bax expression and
intracellurlar Ca2+ signaling in apoptosis of pancreatic cells and the impairment of glucose-induced insulin
secretion. Endocrinololgy 1998;139:1429-1439
19 卢绮萍, 史陈让, 陈孝平, 蔡逊, 李德忠, 张兆林, 易继林, 武小华. 影响肝缺血再灌注损伤主导因素的机制.中华实
验外科杂志 1996;13:369-370
20 姜勇, 韩家淮. P38 MAPK 信号转导通路. 生命科学 1999;11: 102-106
21 姜勇, Ulevitch RJ. LPS介导细胞激活的信号转导: 从CD14到p38MAPK通路的研究. 生理科学进展 1999;30:29-34
22 Jaspers I, Samet JM, Erzurum S, Reed W. Vanadium-induced kappaB-dependent transcription depends upon
peroxide-induced activation of the p38 mitogen-activated protein kinase. Am J Respir Cell Mol Biol 2000;23:95-102
23 Guha M, Bai W, Nadler JL, Natarajan R. Molecular mechanisms of tumor necrosis factor alpha gene expression in
monocytic cells via hyperglycemia-induced oxidant stress-dependent and -independent pathways. J Biol Chem
2000;275: 17728-17739
24 Rao GN. Oxidant stress stimulates phosphorylation of eIF4E without an effect on global protein synthesis in smooth
muscle cells. Lack of evidence for a role of H202 in angiotensin II-induced hypertrophy. J Biol Chem
2000;275:16993-16999
25 Boland S, Bonvallot V, Fournier T, Baeza-Squiban A, Aubier M, Marano F. Mechanisms of GM-CSF increase by diesel
exhaust particles in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2000;278:L25-32
26 Zhu W, Zou Y, Aikawa R, Harada K, Kudoh S, Uozumi H, Hayashi D, Gu Y, Yamazaki T, Nagai R, Yazaki Y, Komuro I.
MAPK superfamily plays an important role in daunomycin-induced apoptosis of cardiac myocytes. Circulation
1999; 100:2100-2107
27 Vereker E, O'Donnell E, Lynch MA. The inhibitory effect of interleukin-1beta on long-term potentiation is coupled
with increased activity of stress-activated protein kinases. J Neurosci 2000;20:6811-6819
28 Mao Z, Bonni A, Xia F, Nadal-Vicens M, Greenberg ME. Neuronal activity-dependent cell survival mediated by
transcription factor MEF2. Science 1999; 286:785-790
29 Sodhi CP, Batlle D, Sahai A. Osteopontin mediates hypoxia-induced proliferation of cultured mesangial cells: role of
PKC and p38 MAPK. Kidney Int 2000;58:691-700
30 Conrad PW, Millhorn DE, Beitner-Johnson D. Hypoxia differentially regulates the mitogen- and stress-activated protein
kinases. Role of Ca2+/CaM in the activation of MAPK and p38 gamma. Adv Exp Med Biol 2000;475:293-302
31 Jope RS, Zhang L, Song L. Peroxynitrite modulates the activation of p38 and extracellular regulated kinases in PC12
cells. Arch Biochem Biophys 2000;376:365-370
32 Lee SA, Park JK, Kang EK, Bae HR, Bae KW, Park HT. Calmodulin-dependent activation of p38 and p42/44 mitogen-
activated protein kinases contributes to c-fos expression by calcium in PC12 cells: modulation by nitric oxide. Brain
Res Mol Brain Res 2000;75:16-24, 百拇医药( 王 雨, 田伏洲,汤礼军,张晓琼)
王雨, 男, 1969-11-20生, 四川省宣汉县人, 汉族. 1993年华西医科大学本科毕业, 2001年第三军医大学博士研究生毕业, 主治医师. 主要从事肝胆及胰腺外科的研究.
项目负责人: 王雨, 610083, 四川省成都市天回镇, 中国人民解放军成都军区总医院全军普通外科中心. wangyu666@Hotmail.com
电话:028-86570353
收稿日期: 2002-03-15 接受日期: 2002-08-23
Effect of OFR and [Ca2+]i on the activation of p38 MAPK in isolated rabbit liver during cold preservation and reperfusion period
Yu Wang, Fu-Zhou Tian, Li-Jun Tang, Xiao-Qiong Zhang
Yu Wang, Fu-Zhou Tian, Li-Jun Tang, Xiao-Qiong Zhang, The General Surgery Center of PLA, General Hospital of Chengdu Military Command, Chengdu 610083, Sichuan Province, China
Correspondence to: Dr. Yu Wang, The General Surgery Center of PLA, General Hospital of Chengdu Military Command, Tian Hui Town, Chengdu 610083, Sichuan Province, China. Wangyu666@Hotmail.com
Received: 2002-03-05 Accepted: 2002-08-23
AbstractAIM: To study the effect of OFR (oxygen-derieved free radicals) and calcium on the activation of p38 MAPK in isolated rabbit liver during cold preservation and reperfusion period.
METHODS: Based on the cold preservation-reperfusion model of isolated rabbit liver, isolated livers were divided into 4 groups according to the concentration of allopurinol or verapamil in the preservation solution. Liver tissue samples were harvested at the time points of before cold preservation, at the end of cold preservation, and during reperfusion period (5 min, 10 min, 60 min, 120 min). The phosphorylation level of p38MAPK and its activity in liver tissue were detected by Western-Blotting and immunoprecipitation respectively. The content of OFR and concentration of intracellular calciumion ([Ca2+]i) were also measured by the corresponding method.
RESULTS: The content of OFR was increased to its peak value at 5 min during reperfusion period, the difference among the four groups was significant (groups A, B, C, D: 2.32±0.22, 1.82±0.15, 1.63±0.11, 1.29±0.10, P <0.05, t =2.57). At 10 min during reperfusion period, the phosphorylation level and its activity of p38MAPK reached its peak value, and there was significant difference among the four groups (Groups A, B, C, D: p38MAPK phosphorylation level (76.2±7.0, 61.4±5.9, 47.3±2.5, 37.7±3.0, P <0.05, t =2.61.Groups A, B, C, D: p38MAPK activity) 82.7±6.8, 69.7±5.2, 54.5±5.5, 41.2±3.1, P <0.05, t =2.61. Groups A, E, F,G: p38MAPK phosphorylation level (80.3±8.7, 63.3±4.2, 50.4±5.6, 39.2±5.7, P <0.05, t =2.61. Groups A, E, F, G: p38MAPK activity (80.8±8.9, 66.7±4.2, 53.7±4.1, 39.4±5.5, P <0.05, t =2.61). The peak value of OFR content and [Ca2+]i was significantly and positively correlated with the peak value of p38MAPK phosphorylation level and activity (P <0.05, ROFR=0.976, RCa=0.970).
CONCLUSION: Allopurinol can significantly inhibit the OFR content of isolated liver tissues while verapamil can significantly inhibit the overload of Ca2+ concentration of isolated liver cells. The OFR content and overload of intracellular calciumion concentration are closely related with p38MAPK activation during cold preservation and reperfusion period. So activation of p38MAPK signal pathway may be an important mechanism of OFR and Ca2+ , which play a critical role in the ischemia-reperfusion injury of donor liver.
Wang Y, Tian FZ, Tang LJ, Zhang XQ. Effect of OFR and [Ca2+]i on the activation of p38 MAPK in isolated rabbit liver during cold preservation and reperfusion period. Shijie Huaren Xiaohua Zazhi 2003;11(11):1694-1698
摘要
目的: 了解离体肝脏缺血再灌注期间氧自由基及钙离子超载是否是激活p38MAPK的因素之一,为进一步揭示肝脏缺血再灌注损伤的信号转导机制打下基础.
方法: 通过自行建立的兔离体肝脏缺血再灌注模型,根据冷保存液中别嘌呤醇浓度的不同分为A、B、C、D 4组; 根据冷保存液中维拉帕米浓度的不同又分为E、F、G、H 4组; 分别于离体前、冷保存末及再灌注5 min、10 min、60 min、120 min获取离体肝组织,分别应用免疫映迹杂交(western-blot)和免疫沉淀法测定磷酸化p38MAPK的表达及活性水平; 并进行肝组织内氧自由基(oxygen free radicals,OFR)含量的测定(A、B、C、D组); 用Fura-2/AM负载法进行肝细胞内钙离子浓度测定(A、E、F、G组).
结果: 于再灌注5 min各组离体肝组织的氧自由基水平升高至峰值,但各组两两之间存在显著性差异(A、B、C、D组: 2.32±0.22,1.82±0.15,1.63±0.11,1.29±0.10 ,P <0.05,t =2.57); 于再灌注10 min供肝组织p38MAPK磷酸化水平及活性均升高至峰值,但各组两两之间存在显著性差异(A、B、C、D组p38MAPK磷酸化水平: 76.2±7.0,61.4±5.9,47.3±2.5,37.7±3.0,P <0.05,t =2.61; A、B、C、D组p38MAPK活性水平: 82.7±6.8,69.7±5.2,54.5±5.5,41.2±3.1,P <0.05,t =2.61; A、E、F、G组p38MAPK磷酸化水平: 80.3±8.7,63.3±4.2,50.4±5.6,39.2±5.7,P <0.05,t =2.61; A、E、F、G组p38MAPK活性水平: 80.8±8.9,66.7±4.2,53.7±4.1,39.4±5.5,P <0.05,t =2.61); 再灌注5 min时氧自由基及[Ca2+]i越高的离体肝,则再灌注10 min时离体肝组织p38活性峰值越高,二者之间呈显著性相关关系. (P <0.05,ROFR=0.976,RCa=0.970)
结论: 别嘌呤醇能显著性抑制离体肝缺血再灌注期间肝组织内OFR水平,而维拉帕米能显著性抑制离体肝缺血再灌注期间肝细胞内钙离子浓度超载; 而且OFR水平及钙离子与离体肝组织p38MAPK的激活密切相关.
王雨, 田伏洲, 汤礼军, 张晓琼. 冷保存再灌注期间离体肝组织内氧自由基及[Ca2+]i对p38MAPK激活的影响. 世界华人消化杂志 2003;11(11):1694-1698
0 引言目前已发现p38 MAPK能被致炎细胞因子、砷盐、热休克、高渗、氧自由基、放射线、抗肿瘤药物等物理和化学应激激活[1-3]; 并参与了许多的疾病过程,如在急性胰腺炎[4]、肿瘤生长[5]及炎症反应[6]中均起重要作用; 供肝缺血再灌注期间也存在众多的应激因素: 缺血、缺氧、细胞胞质内游离钙离子超载[7]; 能量耗竭[8]; 微循环紊乱[9]等,有关p38MAPK在肝脏缺血再灌注期间能否被却鲜见报道[10]. 而在以上应激因素中氧自由基及钙离子在启始缺血再灌注损伤中起重要作用,因此本实验将重点研究氧自由基及钙离子对p38激酶的表达及活性的影响.
1 材料和方法
1.1 材料 高速冷冻离心机(Beckman GS-15R),紫外分光光度仪(Beckman),电泳仪、垂直电泳槽、转移槽及紫外凝胶分析系统均为Bio-Rad公司. 羊抗小鼠p38抗体、抗羊IgG/HRP、生物素Marker及抗生物素IgG/HRP(Santa-Cruz公司),兔抗小鼠p38磷酸化抗体、羊抗小鼠p38非磷酸化抗体、抗兔IgG/HRP及 p38激酶活性测定试剂盒(BioLab),PVDF膜与化学发光试剂(NEN)、别嘌呤醇、丙二醛(MDA)及超氧化物歧化酶(SOD)测试盒 (南京建成生物工程研究所),维拉帕米、RPMI-1640(GIBCO公司)、Fura-2/AM(中国医学科学院药物研究所)、乙二醇双(a-氨基乙基)醚四乙酸(EGTA)、L-谷氨酰胺(EMK 进口分装)
1.2 方法 (1)动物分组健康成年新西兰大耳白兔84只 (由四川省医药实验动物中心提供),雌雄不限,体重2.2-2.7 kg,随机均分为供体组(n =42)和受体组(n =42). 根据原位灌注液及保存液中别嘌呤醇的浓度或维拉帕米的浓度,再将供体组分为7组. A组(n =6)对照组,Euro-collins液中不加别嘌呤醇及维拉帕米; B组(n =6); Euro-collins液中加入别嘌呤醇,浓度为1 mmol/L; C组(n =6): 别嘌呤醇浓度5 mmol/L. D组(n =6): 别嘌呤醇浓度为10 mmol/L. E组(n =6): Euro-collins液中加入维拉帕米,浓度为0.6 mg/100 ml; F组(n =6): 维拉帕米浓度为1.2 mg/100 ml. G组(n =6): 维拉帕米浓度为1.8 mg/100 ml. (2) 模型制备参照Jamieson et al [11]介绍的方法进行离体组兔肝的原位灌注及切取. 将切取的离体肝称重后,立即置于盛有200 ml 4 °C Euro-collines液无菌器皿内,冷保存6 h后,再按下面方法再灌注2 h.
受体兔麻醉后(戊巴比妥钠,30 mg/kg体重,自耳缘静脉注入),自正中线切开腹壁进入腹腔. 解剖、游离左肾动、静脉. 将一根长12.0 cm,内径1.0 mm的硅胶管由左肾动脉插入腹主动脉内; 将另一根长12.0 cm、内径为3.0 mm的硅胶管自左肾静脉插入下腔静脉内,钳夹游离端备用. 将待灌注的离体肝门静脉及肝下下腔静脉分别与受体兔的左肾动脉、左肾静脉插管相连接(供肝的肝动脉、肝上下腔静脉已结扎),解除插管钳夹,恢复供肝血流. 有关上述兔肝保存,再灌注模型制备的具体方法详见文献[12]报道.
分别于离体前、保存末、再灌注5 min、10 min、60 min及120 min时,自供肝左侧叶前缘获取适量组织标本立即存放于液氮中备用,待后进行氧自由基相关指标、磷酸化p38MAPK表达及活性检测. (3) 检测指标及方法: (a) 离体肝组织氧自由基相关指标测定 A、B、C、D组进行氧自由基相关指标测定,具体操作方法按南京建成生物工程研究所提供的试剂盒说明书进行. (b) 离体肝细胞内[Ca2+]i测定 A、E、F、G组离体肝细胞[Ca2+]i的测定根据Fura-2/AM负载法进行. 具体操作方法按文献[3]报道进行. (c) 磷酸化p38MAPK的表达及活性测定提取离体肝组织总蛋白并进行蛋白定量; 然后用Western blot 方法测定p38MAPK表达水平; 用免疫沉淀法测定p38MAPK 活性. 所得图片经Bio-Rad图像分析仪进行分析. 以相应蛋白条带的平均光强度值(mean value intensity,MVI)来表示p38MAPK表达及活性的相对强度.
统计学处理 数据均采用采用均数±标准差形式,Microsoft Excel 2000统计软件进行t检验,P <0.05为差异显著; P <0.01为差异非常显著.
2 结果
2.1 离体肝组织SOD活性 离体前及冷保存末四组离体肝组织SOD活性间 无显著性差异. 再灌注5 min时,各组离体肝SOD活性显著下降,而后逐渐恢复,于再灌注120 min时,除A组外,其余三组SOD活性均基本恢复至正常水平. 再灌注期间各组离体肝组织SOD水平均表现为D>C>B>A,各时相点B、C、D组均显著性高于A组(表1).
2.2 离体肝组织MDA含量 四组离体肝组织MDA含量于离体前和冷保存末相较均无显著性差异(P >0.05). 再灌注5 min时,各组离体肝MDA含量显著升高,而后逐渐下降,于再灌注120 min时,除A组外,其余三组SOD活性均基本下降至正常水平. 再灌注期间各组离体肝组织MDA水平均表现为D
2.3 离体肝细胞[Ca2+]i变化四组离体肝细胞的[Ca2+]i于离体前和冷保存末彼此间无显著性差异(P >0.05); 再灌注期间,离体肝细胞[Ca2+]i于各时相点均有A>E>F>G组,同时相点A组[Ca2+]i水平显著高于其他三组(P <0.05或P <0.01); 各组离体肝细胞的[Ca2+]i水平均于再灌注5 min升到峰值,而后逐渐下降,到再灌注120 min时,C、D组[Ca2+]i恢复至正常水平(表3).
2.4 离体肝组织磷酸化p38蛋白的表达及活性 磷酸化p38的表达及活性于离体前和冷保存末无显著性差异; 而再灌注早期各组p38磷酸化水平均显著升高,于10 min达到峰值; 60 min及120 min时明显下降; 于再灌注期间,A、B、C、D 4组内(或A、E、F、G4组内)两两间存在显著性差异,表现为A>B>C>D (P <0.05或P <0.01)或A>E>F>G (P<0.05或P <0.01),(表4、5).
2.5 离体肝组织p38MAPK活性与氧自由基相关指标(SOD、MDA)及钙离子浓度的相关性分析 再灌注5 min及10 min MDA含量与再灌注10 min肝组织p38活性呈显著性正 相关(R5 = 0.984,P <0.05; R10 =0.976,P <0.05); 而p38活性与SOD活性呈显著性负相(R5 =-0.995,P <0.05; R10 =-0.97,P <0.05 ).
再灌注5 min时[Ca2+]i越高的离体肝,则再灌注10 min时离体肝组织p38MAPK活性峰值越高,二者间呈显著性相关关系(R5 =0.990,P <0.05 ; R10 =0.971,P <0.05 ).
表1 三组离体肝缺血再灌注期间SOD活性变化 (NU/mg-1/pr-1)
组别 | 离体前 | 冷保存末 | 再灌注 (min) | |||
5 | 30 | 60 | 120 | |||
A | 101.5±16.2 | 89.6±15.5 | 38.5±5.5 | 46.5±8.6 | 68.5±9.7 | 78.1±9.7 |
B | 100.2±13.5 | 92.9±13.6 | 53.7±6.9a | 62.3±8.1a | 82.2±8.8a | 96.9±14.1a |
C | 100.9±15.0 | 94.2±13.7 | 68.5±9.6ab | 79.6±6.4ab | 90.4±10.4a | 99.6±6.6a |
D | 98.5±8.1 | 95.8±11.1 | 83.0±8.7abc | 92.7±10.9abc | 97.8±8.1ab | 101.9±17.5a |
aP<0.05 vs同时相点A组; bP <0.05 vs同时相点B组; cP <0.05 vs同时相点C组.
表2 三组离体肝缺血再灌注期间MDA含量变化(nmol/mg-1/pr-1)
组别 | 离体前 | 冷保存末 | 再灌注 (min) | |||
5 | 30 | 60 | 120 | |||
A | 1.12±0.09 | 1.11±0.10 | 2.32±0.22 | 1.86±0.18 | 1.57±0.14 | 1.46±0.13 |
B | 1.09±0.10 | 1.07±0.10 | 1.82±0.15a | 1.61±0.12a | 1.35±0.11a | 1.23±0.14a |
C | 1.08±0.13 | 1.11±0.10 | 1.63±0.11ab | 1.46±0.10ab | 1.27±0.07a | 1.14±0.11a |
D | 1.12±0.10 | 1.08±0.08 | 1.29±0.10abc | 1.21±0.18abc | 1.15±0.13ab | 1.09±0.07ab |
aP<0.05 vs同时相点A组; bP <0.05 vs同时相点B组; cP <0.05 vs同时相点C组.
表3 四组离体肝细胞缺血再灌注期间[Ca2+]i变化(nmol/L-1)
组别 | 离体前 | 冷保存末 | 再灌注 (min) | |||
5 | 10 | 60 | 120 | |||
A | 127.1±18.3 | 134.6±13.9 | 297.3±31.9 | 262.5±17.1 | 215.2±14.6 | 187.1±19.2 |
E | 127.3±20.4 | 135.7±19.3 | 208.1±21.6a | 182.9±26.8a | 165.7±24.9a | 147.6±8.0a |
F | 125.8±19.1 | 135.8±18.3 | 174.3±14.6ae | 149.2±10.5ae | 136.5±21.0ae | 128.2±11.3ae |
G | 127.1±13.9 | 134.9±19.2 | 140.6±17.0aef | 127.8±14.8aef | 127.2±13.4aef | 126.6±13.1ae |
aP<0.05 vs同时相点A组; eP <0.05 vs同时相点E组; fP <0.05 vs同时相点F组.
表4 别嘌呤醇对再灌注10 min时各组离体肝p38磷酸化及活性水平的影响
组别 | 正常对照 | A | B | C | D |
磷酸化水平(MVI) | 6.1±0.9 | 76.2±7.0a | 61.4±5.9ab | 47.3±2.5abcd | 37.7±3.0abcd |
活性水平(MVI) | 8.1±1.2 | 82.7±6.8a | 69.7±5.2ab | 54.5±5.5abc | 41.2±3.1abcd |
aP<0.05 vs 正常对照组; bP <0.01 vs A组; cP <0.05 vs B组; dP <0.05 vs C组.
表5 维拉帕米对再灌注10 min时离体肝p38磷酸化及活性水平的影响
组别 | 正常对照 | A | E | F | G |
磷酸化水平(MVI) | 5.5±1.7 | 80.3±8.7a | 63.3±4.2ab | 50.4±5.6abc | 39.2±5.7abcd |
活性水平(MVI) | 9.1±3.5 | 80.8±8.9a | 66.7±4.2ab | 53.7±4.1abc | 39.4±5.5abcd |
aP<0.05 vs 正常对照组; bP<0.01 vs A组; cP<0.05 vs E组; dP<0.01 vs F组.
3 讨论在肝移植研究领域,既往大量的研究已证实肝细胞内钙离子超载及氧自由基(OFR)过量产生是供肝低温保存-再灌注过程中组织细胞坏死性变化的两个基本病理机制[13-16]. OFR可直接与细胞膜发生脂质过氧化反应,造成膜通透性障碍; 还可直接作用于DNA,使其断裂,引发细胞凋亡[17]. 钙超载可激活细胞内磷脂酶、蛋白酶等,导致膜性结构破坏; 促进氧自由基产生,线粒体钙超载使其呼吸功能受损; 激活内源性核酸内切酶,引起DNA断裂[18]. 而且钙超载被认为是缺血-再灌注损伤的始动因素[19]. 但这二者造成组织细胞损伤的机制还未完全清楚. 已证实,别嘌呤醇能抑制OFR的产生,而维拉帕米是细胞钙通道阻滞剂,能阻断细胞内钙离子水平的升高; 这二者常用在研究中来阐明OFR及钙离子作用机制. 本部分实验用别嘌呤醇和维拉帕米的目的在于通过其抑制供肝组织OFR及钙离子水平,来探讨OFR及钙离子对p38磷酸化及活性的影响.
目前发现能激活p38的因素较多,如LPS、茴香霉素、TNF、热休克、紫外线及高渗环境等[20,21]. 一些研究显示[22-25],氧自由基可激活p38通路,参与靶细胞的损伤过程,如用H2O2刺激多种培养细胞系如Hela、Ratl、NIH3T3及PC12等均能激活p38. Zhu et al [26]发现,用柔红霉素处理新生小鼠培养心肌细胞,可导致心肌细胞p38激活,用OFR清除剂或钙离子拮抗剂后,p38活化受到明显抑制,提示OFR与钙离子参与了p38的激活. Vereker et al [27]发现,用IL-1b进行大鼠脑室内注射可引起海马区脑组织OFR升高和p38活性增高,用抗氧化剂维生素E和维生素C喂食后,p38活性增高被抑制. 这些结果提示OFR具有激活p38的作用. 本部分实验发现,供肝组织OFR含量与再灌注期间p38活性峰值间呈显著性正相关关系,用别嘌呤醇抑制OFR的产生后,供肝p38活性则显著下降,提示冷保存再灌注期间供肝组织OFR能够上调p38活性,供肝组织OFR含量越高,则p38活性也越高.
最近的文献表明,p38的激活与钙离子也密切相关[28-31]. Conrad et al [30] 发现,缺氧能引起PC12细胞p38的激活; 通过进一步的研究,发现去除培养基中的钙离子或应用钙调蛋白拮抗剂W13后,缺氧环境中PC12细胞p38激活被阻断,提示钙离子参与了缺氧引发的p38激活过程,且在p38的上游起调节作用. Lee et al [32] 发现,在PC12培养细胞,细胞内钙离子浓度升高后5 min内p38即被活化,这种钙离子对p38的激活能被钙调蛋白特异性拮抗剂W13或calmidazolium所抑制,提示钙离子激活p38具有钙调蛋白依赖性. 本部分实验结果显示,供肝细胞[Ca2+]i与再灌注期间p38活性峰值呈显著性正相关关系,用维拉帕米降低供肝细胞的[Ca2+]i水平后,供肝p38活性即显著降低,提示冷保存再灌注期间供肝细胞内钙离子能够上调p38活性,且钙离子浓度越高,p38活性越高.
本部分实验结果发现,OFR及钙离子对磷酸化p38的表达水平也有显著性影响,OFR及钙离子能上调磷酸化p38蛋白的表达,而p38的磷酸化是其产生底物酶活性的必要条件,提示OFR及钙离子上调供肝p38活性的作用至少发生在磷酸化水平,因此说明OFR及钙离子对冷保存再灌注期间供肝p38具有激活作用.
4 参考文献1 Han J, Lee JD, Bibbs L, Ulevitch RJ. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells.
Science 1994;265:808-811
2 Jiang Y, Chen C, Li Z, Guo W, Gegner JA, Lin S, Han J. Characterization of the structure and function of a new
mitogen-activated protein kinase (p38beta). J Biol Chem 1996;271: 17920-17926
3 姜勇, 刘爱华, 张琳, 赵克森. 脂多糖激活p38在诱导肿瘤坏死因子a基因表达中的作用. 中华医学杂志 1999;79:360-364
4 Fleischer F, Dabew R, Goke B, Wagner ACC. Stress kinase inhibition modulates acute experimental pancreatitis. World
J Gastroenterol 2001;7:259-265
5 毛华, 袁爱力, 赵敏芳, 赖卓胜, 张亚历, 周殿元. P38MAPK信号通路影响血管内皮细胞生长因子诱导肝癌细胞超微结构
变化. 世界华人消化杂志 2000;8:536-538
6 Meng AH, Ling YL, Zhang XP, Zhang JL. Anti-inflammatory effect of cholecystokinin and its signal transduction mechanism
in endotoxic shock rat. World J Gastroenterol 2002;8:712-717
7 Uchida M, Takemoto Y, Nagasue N, Kimoto T, Dhar DK, Nakamura T. Calcium in pig livers following ischemia and
reperfusion. J Hepatol 1994;20:714-719
8 Astarcioglu I, Adam R, Dimicoli JL, Gigou M, Patry J, Sebagh M, Bismuth H. Protective effect of alanine against graft
failure of transplanted livers from fasted donor rats. Transplant Proc 1995;27:507-508
9 Kobayashi H, Nonami T, Kurokawa T, Takeuchi Y, Harada A, Nakao A, Takagi H. Role of endogenous nitric oxide
in ischemia-reperfusion injury in rat liver. J Surg Res 1995;59:772-779
10 Kiemer AK, Kulhanek-Heinze S, Gerwig T, Gerbes AL, Vollmar AM. Stimulation of p38 MAPK by hormal preconditioning
with atrial natriuretic peptide. World J Gastroenterol 2002;8:707-711
11 Jamieson NV, Lindell S, Sundberg R, Southard JH, Belzer FO. An analysis of the components in UW solution using
the isolated perfused rabbit liver. Transplantation 1988;46:512-516
12 汤礼军, 田伏洲, 王雨, 黄大熔, 周树, 胡建中. 兔肝脏保存-再灌注损伤模型的建立及评价. 肝胆外科杂志 1998;6:123-125
13 Koeppel TA, Lehmann TG, Thies JC, Gehrcke R, Gebhard MM, Herfarth C, Otto G, Post S. Impact of N-acetylcysteine on
the hepatic microcirculation after orthotopic liver transplantation. Transplantation 1996;61:1397-1402
14 Stefanovich P, Ezzell RM, Sheehan SJ, Tompkins RG, Yarmush ML, Toner M. Effects of hypothermia on the function,membrane integrity, and cytoskeletal structure of hepatocytes. Cryobiology 1995;32:389-403
15 Gao W, Connor HD, Lemasters JJ, Mason RP, Thurman RG. Primary nonfunction of fatty livers produced by alcohol is
associated with a new antioxidant-insensitive free radical species. Transplantation 1995;59:674-679
16 Kusumoto K, Morimoto T, Minor T, Uchino J, Isselhard W. Allopurinol effects in rat liver transplantation recovery of
energy metabolism and free radical-induced damage. Eur Surg Res 1995;27:258-291
17 Shah KA, Shurey S, Green CJ. Apoptosis after intestinal ischemia-reperfusion injury: a morphological study.
Transplantation 1997;64:1393-1397
18 Mizuno N, Yoshitomi H, Ishida H, Kuromi H, Kawaki J, Seino Y, Seino S. Altered bcl-2 and bax expression and
intracellurlar Ca2+ signaling in apoptosis of pancreatic cells and the impairment of glucose-induced insulin
secretion. Endocrinololgy 1998;139:1429-1439
19 卢绮萍, 史陈让, 陈孝平, 蔡逊, 李德忠, 张兆林, 易继林, 武小华. 影响肝缺血再灌注损伤主导因素的机制.中华实
验外科杂志 1996;13:369-370
20 姜勇, 韩家淮. P38 MAPK 信号转导通路. 生命科学 1999;11: 102-106
21 姜勇, Ulevitch RJ. LPS介导细胞激活的信号转导: 从CD14到p38MAPK通路的研究. 生理科学进展 1999;30:29-34
22 Jaspers I, Samet JM, Erzurum S, Reed W. Vanadium-induced kappaB-dependent transcription depends upon
peroxide-induced activation of the p38 mitogen-activated protein kinase. Am J Respir Cell Mol Biol 2000;23:95-102
23 Guha M, Bai W, Nadler JL, Natarajan R. Molecular mechanisms of tumor necrosis factor alpha gene expression in
monocytic cells via hyperglycemia-induced oxidant stress-dependent and -independent pathways. J Biol Chem
2000;275: 17728-17739
24 Rao GN. Oxidant stress stimulates phosphorylation of eIF4E without an effect on global protein synthesis in smooth
muscle cells. Lack of evidence for a role of H202 in angiotensin II-induced hypertrophy. J Biol Chem
2000;275:16993-16999
25 Boland S, Bonvallot V, Fournier T, Baeza-Squiban A, Aubier M, Marano F. Mechanisms of GM-CSF increase by diesel
exhaust particles in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2000;278:L25-32
26 Zhu W, Zou Y, Aikawa R, Harada K, Kudoh S, Uozumi H, Hayashi D, Gu Y, Yamazaki T, Nagai R, Yazaki Y, Komuro I.
MAPK superfamily plays an important role in daunomycin-induced apoptosis of cardiac myocytes. Circulation
1999; 100:2100-2107
27 Vereker E, O'Donnell E, Lynch MA. The inhibitory effect of interleukin-1beta on long-term potentiation is coupled
with increased activity of stress-activated protein kinases. J Neurosci 2000;20:6811-6819
28 Mao Z, Bonni A, Xia F, Nadal-Vicens M, Greenberg ME. Neuronal activity-dependent cell survival mediated by
transcription factor MEF2. Science 1999; 286:785-790
29 Sodhi CP, Batlle D, Sahai A. Osteopontin mediates hypoxia-induced proliferation of cultured mesangial cells: role of
PKC and p38 MAPK. Kidney Int 2000;58:691-700
30 Conrad PW, Millhorn DE, Beitner-Johnson D. Hypoxia differentially regulates the mitogen- and stress-activated protein
kinases. Role of Ca2+/CaM in the activation of MAPK and p38 gamma. Adv Exp Med Biol 2000;475:293-302
31 Jope RS, Zhang L, Song L. Peroxynitrite modulates the activation of p38 and extracellular regulated kinases in PC12
cells. Arch Biochem Biophys 2000;376:365-370
32 Lee SA, Park JK, Kang EK, Bae HR, Bae KW, Park HT. Calmodulin-dependent activation of p38 and p42/44 mitogen-
activated protein kinases contributes to c-fos expression by calcium in PC12 cells: modulation by nitric oxide. Brain
Res Mol Brain Res 2000;75:16-24, 百拇医药( 王 雨, 田伏洲,汤礼军,张晓琼)