淋球菌43株对环丙沙星的耐药性及gyrA和parC基因突变的检测
Detection of 43 ciprofloxacin resistant gonococcal strains and mutations in gyrA and parC
LIU XiaoBin, REN XiaoRong, LIU YongXian, TIAN HongYing, FU ZhaoYing, WANG YaPing
Department of Microbiology and Immunology, Faculty of Clinical Medicine, Medical College, Yan’an University, Yan’an 716000, China
【Abstract】 AIM: To determine the occurrence of ciprofloxacin resistance among Neisseria gonorrhoeae strains isolated in Yan’an in 2002 and the frequency and patterns of mutations in gyrA and parC genes in these isolates. METHODS: Antibiotic susceptibility tests were performed in 43 isolates, gyrA and parC genes were amplified by PCR and the PCR products were directly sequenced. RESULTS: There were 37 strains resistant to ciprofloxacin in the isolates of gonococcal and the resisting frequency was 86%. Mutations in gyrA were Ser91→Phe and Asp95→Gly, and the most common mutations in parC were Asp86→Asn and Ser87→Arg. Glu91→Gly and Arg116→Leu were also detected in parC. Mutations in gyrA gene occurred in all the isolates with reduced susceptibility and resistance, and mutations in parC gene occurred in the isolates of resistance, but also occurred in one isolate with MIC 0.5 μg/mL. CONCLUSION: Mutations in gyrA and parC genes are mainly responsible for the gonococcal resistance to ciprofloxacin.
【Keywords】 Nesseria gonorrhoea; gyrA; parC; ciprofloxacin resistance
【摘要】 目的:确定延安地区2002年分离的淋球菌对环丙沙星的耐药率和耐药菌株gyrA及parC基因突变情况. 方法:从临床分离43株淋球菌,进行药敏试验. PCR扩增gyrA和parC基因,产物直接测序. 结果: 43株淋球菌菌株中,耐药株为37株,耐药率为86%. 耐药菌株gyrA基因的突变形式是Ser91→Phe和 Asp95→Gly. parC基因最多见的突变是Asp86→Asn和Ser87→Arg,另外还检测到了Glu91→Gly 和Arg116→Leu. gyrA 突变见于所有的敏感性下降株和耐药株, parC突变见于耐药株,但有一株MIC为0.5 μg/mL的菌株也存在parC突变. 结论:延安地区淋球菌gyrA和parC基因突变是形成淋球菌耐环丙沙星的主要原因.
【关键词】 淋球菌; gyrA; parC; 环丙沙星耐药性
0引言
淋病治疗的一个日益增长的问题是淋球菌的耐药情况. 淋球菌对氟喹诺酮类完全或不完全耐药已经成为包括我国在内许多国家日益关注的问题. 为确定淋球菌对氟喹诺酮类的耐药机制已有作者进行了一系列研究[1-3], 其中最重要的机制是由于淋球菌染色体中gyrA和(或)parC基因氟喹诺酮耐药决定区(QRDR)的突变. 且研究表明淋球菌对环丙沙星的耐药水平可能与gyrA和parC基因突变的数量和位置有关[4]. 我国对淋球菌耐环丙沙星的研究进行得很少,但有报道陕西地区2001年总耐药率为88.9%[5]. 鉴于这种情况,我们调查分析了2002年本实验室分离培养的淋球菌菌株耐环丙沙星的比率及在gyrA和parC的QRDR区基因突变情况.
1材料和方法
1.1材料
2002年我室从临床确诊淋病患者中培养出的43株淋球菌. 以标准淋球菌菌株ATCC 49226作为对照.
1.2方法
1.2.1药敏试验采用琼脂稀释法,按照WHO推荐的方法进行. 分别以MIC≤0.06 μg/mL作为敏感(S),MIC介于0.12至0.5 μg/mL为中度敏感(I),MIC≥1 μg/mL为耐药(R)[6].
1.2.2gyrA和parC基因突变分析提取所分离淋球菌DNA,PCR扩增gyrA和parC包括QRDR片段的序列后直接测序,然后确定基因突变. 具体方法按照文献进行[7,8]. gyrA基因序列从核苷酸的160和438位置双向进行测序,所对应的氨基酸序列是54到146. parC基因序列从核苷酸166到420,所对应的氨基酸序列是56到140. 测序过程由上海博雅生物工程公司进行.
2结果
2.1环丙沙星的敏感性在我们分离的2002年43株淋球菌菌株中,耐药37株,中度敏感5株,敏感1株. 分别占到了86%, 12%和2%. 43株淋球菌对环丙沙星的MIC见Tab 1.表143株淋球菌MIC检测结果及gyrA和parC基因突变形式(略)
2.2基因测序结果通过gyrA和parC的基因测序结果与标准菌株ATCC 49226的测序结果进行比较确定的. 突变结果见Tab 1. 从Tab 1中可以看出,在环丙沙星耐药菌株(CipR)中gyrA和parC基因有不同模式的突变. gyrA最多见的突变形式是Ser91→Phe和 Asp95→Gly. parC最多见的突变是Asp86→Asn和Ser87→Arg,另外还检测到了Glu91→Gly 和Arg116→Leu.
3讨论
氟喹诺酮类是一类人工合成的广谱抗生素,抗菌作用为其能与细菌DNA促旋酶(DNA gyrase)结合,从而阻止细菌DNA的复制. 对淋球菌有很好的抗菌活性,且能口服,应用方便. 自从该类药用于治疗淋病以来,耐药率逐年上升. 我们研究获得的耐药率为86.05%,这与任小蓉2001年报道的陕西地区耐药率88.90%相近[5]. 另外氟喹诺酮类药物对儿童及孕妇有副作用,因此目前临床治疗淋病不应把其作为首选. 淋球菌对氟喹诺酮类药物的耐药性是由许多机制介导的,但其中最重要的是染色体gyrA基因突变导致的DNA促旋酶(DNA gyrase)和parC基因突变导致的拓扑异构酶Ⅳ氨基酸改变[9,10]. 以前国外有研究表明对环丙沙星敏感淋球菌的gyrA和parC基因没有突变,或者只有gyrA突变[7]. 中度敏感菌株(CipI)没有严格的gyrA和parC基因同时突变,也经常只有gyrA突变. 而耐药菌株(CipR)一般都有gyrA突变,不突变的情况极少,最常见的突变点是氨基酸91和95的位置,而且有研究认为parC至少有一个位置突变[2-4]. 我们的结果也显示淋球菌在对氟喹诺酮类的耐药中gyrA基因的氨基酸91和95的位置是最多见的突变位点,同时也伴有parC的突变,这与以前国外的研究结果是一致的. 我们研究发现gyrA的2种突变和parC的2种突变,国外已有过报道,也是国外发生突变频率最高的. 国内外文献报道过的gyrA有5种突变形式,parC有6种突变形式. 这表明在延安这样一个地理环境相对闭塞的环境中,淋球菌的耐药株来源有限,很有可能来源于1个或几个突变菌株,也有可能是一个耐药菌株的暴发所形成的.
但有一现象值得注意,在MIC为0.5 μg/mL的耐药菌株中,却有gyrA和parC基因同时突变,这与以前的报道有所不同,因为一直以来都认为gyrA和parC基因同时突变会导致耐药性增强,即应该是耐药菌株. 但国外也有学者发现这两者并不一定是严格相关的. 故耐药性的强弱是不是可以根据突变形式来确定还需进一步研究.
gyrB突变在淋球菌耐药株中非常罕见,但在其他细菌对氟喹诺酮类药物的耐药中十分常见,起着重要作用. 如大肠杆菌耐氟喹诺酮类药物株DNA gyrB的QRDR区是很重要的突变区[11,12]. 另外,parE突变在淋球菌耐药机制中以前也未见报道. 为什么这两个基因在淋球菌耐药株中未见突变,原因不明. 还有学者研究表明淋球菌耐氟喹诺酮机制与细胞的流出物机制有关:淋球菌对疏水/亲水因子如抗生素的抵抗介导了细胞转换系统中的流出物系统,最终降低了对抗生素的敏感性. 故在淋球菌的耐药机制中还需要进一步研究.
【参考文献】
[1] Deguchi T, Yasuda M, Asano M, et al. DNA gyrase mutations in quinoloneresistant clinical isolates of Neisseria gonorrhoeae[J]. Antimicrob Agents Chemother, 1995; 39(2): 561-563.
[2] Su X, Lind I. Molecular basis of highlevel ciprofloxacin resistance in Neisseria gonorrhoeae strains isolated in Denmark from 1995 to 1998[J]. Antimicrob Agents Chemother, 2001; 45(1): 117-123.
[3] Trees DL, Sandul AL, Whittington WL, et al. Identification of novel mutation patterns in the parC gene of ciprofloxacinresistant isolates of Neisseria gonorrhoeae[J]. Antimicrob Agents Chemother, 1998; 42(8): 2103-2105.
[4] Deguchi T, Yasuda M, Nakano M, et al. Quinoloneresistant Neisseria gonorrhoeae: Correlation of alterations in the GyrA subunit of DNA gyrase and the ParC subunit of topoisomerase IV with antimicrobial susceptibility profiles[J]. Antimicrob Agents Chemother, 1996; 40(4): 1020-1023.
[5] 任小蓉,尚宏喜,肖生祥. 陕西54株淋球菌对4种抗生素的敏感性测定[J]. 延安大学学报,2003;1(1):17-18.
Ren XR, Shang HX, Xiao SX. Detection of 4 antibiotic suscepitibility of 54 Nessria gonorrhoea strains isolated in shanxi[J]. J Yan’an Univ, 2003;1(1):17-18.
[6] National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial susceptibility testing: Twelfth informational supplement[Z]. NCCLS document M100S12. Wayne, Pennsylvania: National Committee for Clinical Laboratory Standards, 2002.
[7] Tanaka M, Nakayama H, Haraoka M, et al. Antimicrobial resistance of Neisseria gonorrhoeae and high prevalence of ciprofloxacinresistant isolates in Japan, 1993-1998[J]. J Clin Microbiol, 2000; 38(5): 521-525.
[8] Tanaka M, Nakayama H, Haraoka M, et al. Susceptibilities of Neisseria gonorrhoeae isolates containing amino acid substitutions in GyrA, with or without substitutions in ParC, to newer fluoroquinolones and other antibiotics[J]. Antimicrob Agents Chemother, 2000; 44(1): 192-195.
[9] Belland RJ, Morrison SG, Ison CA, et al. Neisseria gonorrhoeae acquires mutations in analogous regions of gyrA and parC in fluoroquinoloneresistant isolates[J]. Mol Microbiol, 1994; 14: 371-380.
[10] Deguchi T, Yasuda M, Nakano M, et al. Uncommon occurrence of mutations in the gyrB gene associated with quinolone resistance in clinical isolates of Neisseria gonorrhoeae[J]. Antimicrob Agents Chemother, 1996; 40(2): 437-438.
[11] Weigel LM, Anderson GJ, Facklam RR, et al. Genetic analysis of mutations contributing to fluoroquinolone resistance in clinical isolates of Streptococcus pneumoniae[J]. Antimicrob Agents Chemother, 2001; 45(12): 3517-3523.
[12] Trees DL, Sandul AL, Neal SN, et al. Molecular epidemiology of Neisseria gonorrhoeae exhibiting decreased susceptibility and resistance to ciprofloxacin in Hawaii, 1991-1999[J]. Sex Transm Dis, 2001; 28: 309-314.
作者简介:刘晓斌(1966),男(汉族),陕西省延安市子长县人. 学士,副教授. Tel.(0911)2411817
(延安大学医学院临床医学系微生物免疫教研室,陕西 延安 716000)
编辑何扬举, 百拇医药(刘晓斌,任小蓉,刘永仙,田红英,符兆英,王亚萍)
LIU XiaoBin, REN XiaoRong, LIU YongXian, TIAN HongYing, FU ZhaoYing, WANG YaPing
Department of Microbiology and Immunology, Faculty of Clinical Medicine, Medical College, Yan’an University, Yan’an 716000, China
【Abstract】 AIM: To determine the occurrence of ciprofloxacin resistance among Neisseria gonorrhoeae strains isolated in Yan’an in 2002 and the frequency and patterns of mutations in gyrA and parC genes in these isolates. METHODS: Antibiotic susceptibility tests were performed in 43 isolates, gyrA and parC genes were amplified by PCR and the PCR products were directly sequenced. RESULTS: There were 37 strains resistant to ciprofloxacin in the isolates of gonococcal and the resisting frequency was 86%. Mutations in gyrA were Ser91→Phe and Asp95→Gly, and the most common mutations in parC were Asp86→Asn and Ser87→Arg. Glu91→Gly and Arg116→Leu were also detected in parC. Mutations in gyrA gene occurred in all the isolates with reduced susceptibility and resistance, and mutations in parC gene occurred in the isolates of resistance, but also occurred in one isolate with MIC 0.5 μg/mL. CONCLUSION: Mutations in gyrA and parC genes are mainly responsible for the gonococcal resistance to ciprofloxacin.
【Keywords】 Nesseria gonorrhoea; gyrA; parC; ciprofloxacin resistance
【摘要】 目的:确定延安地区2002年分离的淋球菌对环丙沙星的耐药率和耐药菌株gyrA及parC基因突变情况. 方法:从临床分离43株淋球菌,进行药敏试验. PCR扩增gyrA和parC基因,产物直接测序. 结果: 43株淋球菌菌株中,耐药株为37株,耐药率为86%. 耐药菌株gyrA基因的突变形式是Ser91→Phe和 Asp95→Gly. parC基因最多见的突变是Asp86→Asn和Ser87→Arg,另外还检测到了Glu91→Gly 和Arg116→Leu. gyrA 突变见于所有的敏感性下降株和耐药株, parC突变见于耐药株,但有一株MIC为0.5 μg/mL的菌株也存在parC突变. 结论:延安地区淋球菌gyrA和parC基因突变是形成淋球菌耐环丙沙星的主要原因.
【关键词】 淋球菌; gyrA; parC; 环丙沙星耐药性
0引言
淋病治疗的一个日益增长的问题是淋球菌的耐药情况. 淋球菌对氟喹诺酮类完全或不完全耐药已经成为包括我国在内许多国家日益关注的问题. 为确定淋球菌对氟喹诺酮类的耐药机制已有作者进行了一系列研究[1-3], 其中最重要的机制是由于淋球菌染色体中gyrA和(或)parC基因氟喹诺酮耐药决定区(QRDR)的突变. 且研究表明淋球菌对环丙沙星的耐药水平可能与gyrA和parC基因突变的数量和位置有关[4]. 我国对淋球菌耐环丙沙星的研究进行得很少,但有报道陕西地区2001年总耐药率为88.9%[5]. 鉴于这种情况,我们调查分析了2002年本实验室分离培养的淋球菌菌株耐环丙沙星的比率及在gyrA和parC的QRDR区基因突变情况.
1材料和方法
1.1材料
2002年我室从临床确诊淋病患者中培养出的43株淋球菌. 以标准淋球菌菌株ATCC 49226作为对照.
1.2方法
1.2.1药敏试验采用琼脂稀释法,按照WHO推荐的方法进行. 分别以MIC≤0.06 μg/mL作为敏感(S),MIC介于0.12至0.5 μg/mL为中度敏感(I),MIC≥1 μg/mL为耐药(R)[6].
1.2.2gyrA和parC基因突变分析提取所分离淋球菌DNA,PCR扩增gyrA和parC包括QRDR片段的序列后直接测序,然后确定基因突变. 具体方法按照文献进行[7,8]. gyrA基因序列从核苷酸的160和438位置双向进行测序,所对应的氨基酸序列是54到146. parC基因序列从核苷酸166到420,所对应的氨基酸序列是56到140. 测序过程由上海博雅生物工程公司进行.
2结果
2.1环丙沙星的敏感性在我们分离的2002年43株淋球菌菌株中,耐药37株,中度敏感5株,敏感1株. 分别占到了86%, 12%和2%. 43株淋球菌对环丙沙星的MIC见Tab 1.表143株淋球菌MIC检测结果及gyrA和parC基因突变形式(略)
2.2基因测序结果通过gyrA和parC的基因测序结果与标准菌株ATCC 49226的测序结果进行比较确定的. 突变结果见Tab 1. 从Tab 1中可以看出,在环丙沙星耐药菌株(CipR)中gyrA和parC基因有不同模式的突变. gyrA最多见的突变形式是Ser91→Phe和 Asp95→Gly. parC最多见的突变是Asp86→Asn和Ser87→Arg,另外还检测到了Glu91→Gly 和Arg116→Leu.
3讨论
氟喹诺酮类是一类人工合成的广谱抗生素,抗菌作用为其能与细菌DNA促旋酶(DNA gyrase)结合,从而阻止细菌DNA的复制. 对淋球菌有很好的抗菌活性,且能口服,应用方便. 自从该类药用于治疗淋病以来,耐药率逐年上升. 我们研究获得的耐药率为86.05%,这与任小蓉2001年报道的陕西地区耐药率88.90%相近[5]. 另外氟喹诺酮类药物对儿童及孕妇有副作用,因此目前临床治疗淋病不应把其作为首选. 淋球菌对氟喹诺酮类药物的耐药性是由许多机制介导的,但其中最重要的是染色体gyrA基因突变导致的DNA促旋酶(DNA gyrase)和parC基因突变导致的拓扑异构酶Ⅳ氨基酸改变[9,10]. 以前国外有研究表明对环丙沙星敏感淋球菌的gyrA和parC基因没有突变,或者只有gyrA突变[7]. 中度敏感菌株(CipI)没有严格的gyrA和parC基因同时突变,也经常只有gyrA突变. 而耐药菌株(CipR)一般都有gyrA突变,不突变的情况极少,最常见的突变点是氨基酸91和95的位置,而且有研究认为parC至少有一个位置突变[2-4]. 我们的结果也显示淋球菌在对氟喹诺酮类的耐药中gyrA基因的氨基酸91和95的位置是最多见的突变位点,同时也伴有parC的突变,这与以前国外的研究结果是一致的. 我们研究发现gyrA的2种突变和parC的2种突变,国外已有过报道,也是国外发生突变频率最高的. 国内外文献报道过的gyrA有5种突变形式,parC有6种突变形式. 这表明在延安这样一个地理环境相对闭塞的环境中,淋球菌的耐药株来源有限,很有可能来源于1个或几个突变菌株,也有可能是一个耐药菌株的暴发所形成的.
但有一现象值得注意,在MIC为0.5 μg/mL的耐药菌株中,却有gyrA和parC基因同时突变,这与以前的报道有所不同,因为一直以来都认为gyrA和parC基因同时突变会导致耐药性增强,即应该是耐药菌株. 但国外也有学者发现这两者并不一定是严格相关的. 故耐药性的强弱是不是可以根据突变形式来确定还需进一步研究.
gyrB突变在淋球菌耐药株中非常罕见,但在其他细菌对氟喹诺酮类药物的耐药中十分常见,起着重要作用. 如大肠杆菌耐氟喹诺酮类药物株DNA gyrB的QRDR区是很重要的突变区[11,12]. 另外,parE突变在淋球菌耐药机制中以前也未见报道. 为什么这两个基因在淋球菌耐药株中未见突变,原因不明. 还有学者研究表明淋球菌耐氟喹诺酮机制与细胞的流出物机制有关:淋球菌对疏水/亲水因子如抗生素的抵抗介导了细胞转换系统中的流出物系统,最终降低了对抗生素的敏感性. 故在淋球菌的耐药机制中还需要进一步研究.
【参考文献】
[1] Deguchi T, Yasuda M, Asano M, et al. DNA gyrase mutations in quinoloneresistant clinical isolates of Neisseria gonorrhoeae[J]. Antimicrob Agents Chemother, 1995; 39(2): 561-563.
[2] Su X, Lind I. Molecular basis of highlevel ciprofloxacin resistance in Neisseria gonorrhoeae strains isolated in Denmark from 1995 to 1998[J]. Antimicrob Agents Chemother, 2001; 45(1): 117-123.
[3] Trees DL, Sandul AL, Whittington WL, et al. Identification of novel mutation patterns in the parC gene of ciprofloxacinresistant isolates of Neisseria gonorrhoeae[J]. Antimicrob Agents Chemother, 1998; 42(8): 2103-2105.
[4] Deguchi T, Yasuda M, Nakano M, et al. Quinoloneresistant Neisseria gonorrhoeae: Correlation of alterations in the GyrA subunit of DNA gyrase and the ParC subunit of topoisomerase IV with antimicrobial susceptibility profiles[J]. Antimicrob Agents Chemother, 1996; 40(4): 1020-1023.
[5] 任小蓉,尚宏喜,肖生祥. 陕西54株淋球菌对4种抗生素的敏感性测定[J]. 延安大学学报,2003;1(1):17-18.
Ren XR, Shang HX, Xiao SX. Detection of 4 antibiotic suscepitibility of 54 Nessria gonorrhoea strains isolated in shanxi[J]. J Yan’an Univ, 2003;1(1):17-18.
[6] National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial susceptibility testing: Twelfth informational supplement[Z]. NCCLS document M100S12. Wayne, Pennsylvania: National Committee for Clinical Laboratory Standards, 2002.
[7] Tanaka M, Nakayama H, Haraoka M, et al. Antimicrobial resistance of Neisseria gonorrhoeae and high prevalence of ciprofloxacinresistant isolates in Japan, 1993-1998[J]. J Clin Microbiol, 2000; 38(5): 521-525.
[8] Tanaka M, Nakayama H, Haraoka M, et al. Susceptibilities of Neisseria gonorrhoeae isolates containing amino acid substitutions in GyrA, with or without substitutions in ParC, to newer fluoroquinolones and other antibiotics[J]. Antimicrob Agents Chemother, 2000; 44(1): 192-195.
[9] Belland RJ, Morrison SG, Ison CA, et al. Neisseria gonorrhoeae acquires mutations in analogous regions of gyrA and parC in fluoroquinoloneresistant isolates[J]. Mol Microbiol, 1994; 14: 371-380.
[10] Deguchi T, Yasuda M, Nakano M, et al. Uncommon occurrence of mutations in the gyrB gene associated with quinolone resistance in clinical isolates of Neisseria gonorrhoeae[J]. Antimicrob Agents Chemother, 1996; 40(2): 437-438.
[11] Weigel LM, Anderson GJ, Facklam RR, et al. Genetic analysis of mutations contributing to fluoroquinolone resistance in clinical isolates of Streptococcus pneumoniae[J]. Antimicrob Agents Chemother, 2001; 45(12): 3517-3523.
[12] Trees DL, Sandul AL, Neal SN, et al. Molecular epidemiology of Neisseria gonorrhoeae exhibiting decreased susceptibility and resistance to ciprofloxacin in Hawaii, 1991-1999[J]. Sex Transm Dis, 2001; 28: 309-314.
作者简介:刘晓斌(1966),男(汉族),陕西省延安市子长县人. 学士,副教授. Tel.(0911)2411817
(延安大学医学院临床医学系微生物免疫教研室,陕西 延安 716000)
编辑何扬举, 百拇医药(刘晓斌,任小蓉,刘永仙,田红英,符兆英,王亚萍)