线粒体膜电压依赖阴离子通道
线粒体膜,1VDAC基本特征,2VDAC的调控,3VDAC的生理功能,【参考文献】
电压依赖阴离子通道(voltage-dependent anion channels,VDAC)位于线粒体外膜,其闭合可以抑制线粒体功能,导致线粒体膜通透性发生改变,释放蛋白如细胞色素C、Smac/Diablo、细胞凋亡因子等最终导致凋亡[1,2]。VDAC受多种因素的影响,如缺氧、细胞低氧、乙醇、活性氧和活性氮、细胞因子、激酶、NADH的增加可以抑制VDAC,促进呼吸链底物如短链脂肪酸和乙醛氧化。很多证据表明VDAC对线粒体及细胞功能的调节非常重要。1 VDAC基本特征
1.1 VDAC分子结构特征 位于线粒体外膜的VDAC非常重要[3]。目前已经从多种生物体内提取出线粒体VDAC,包括植物、动物、真菌、原生生物等。VDAC有3种同分异构体,最原始的模型是β折叠,该跨膜结构由10个氨基酸组成,该结构高度保守,但并非所有的β折叠均跨越线粒体膜,该通道桶装结构由一个β螺旋和13个β折叠组成[5],哺乳动物VDAC对La3+敏感,但N.crassaVDAC不敏感。相反,N.crassaVDAC受G-肌动蛋白调节,而哺乳动物不受其调节。
VDAC在各种生物中分布并非一致。N.crassa有一种VDAC,而S.cerebiciae(酵母)有两种VDAC,大鼠、小麦有3种VDAC同分异构体,其分子量在30kD左右[4]。敲除3种VDAC同分异构体的一种可以导致严重的后果,如敲除大鼠VDAC3将致大鼠不孕,而敲除VDAC1或VDAC2会引起呼吸功能下降30%。胚胎期敲除VDAC1可致部分动物死亡。
1.2 VDAC电生理学特征
研究发现VDAC并非完全关闭或开放两种状态,多数情况下是部分开放或闭合[3]。VDAC既有离子选择性又有电压依赖性。在开放状态,阴离子优先于阳离子,但这种选择性很弱。电压作用是对称的,半数激活电压在±50mV。门控数量中度减少就可致VDAC选择性的明显改变。传导性越高对阴离子的通透性越强,而这一点对代谢物质是很重要的,因多数代谢物质是阴离子。VDAC开放时孔道直径约为1.2~1.5nm,闭合时孔道直径0.4~0.5nm,此时VDAC反而可以允许K+、Na+和Ca2+等小分子阳离子通过。这种选择性的改变大大减少了阴离子电流。这不仅表现在通道两边的静电荷抑制阴离子的通过,而且通道的孔径也减小,阻碍阴离子通过通道,特别是对大的阴离子如ATP。线粒体膜内的pH值比基质低0.4~0.5个单位,这相当于20~30mV的膜电势 ......
您现在查看是摘要页,全文长 9566 字符。