小麦及其近缘物种中小分子量核糖核酸酶的初步分析
作者:赵慧 刘坤凡 王道文
单位:中国科学院遗传研究所植物细胞与染色体工程国家重点实验室, 北京 100101
关键词:Rnase;小麦;发芽种子;Rnase功能胶
遗传学报000507
摘要: 应用RNase功能胶体系,在小麦及其相关物种中发现1组小分子量核糖核酸酶(RNase)。RNase的分子量变化范围在6.5~14kDa间,低于已报道的大多数植物RNase的分子量。小分子
量RNase在幼苗中大量表达,并且在降解RNA底物时,随着缓冲液pH值及离子浓度的不同而有所变化。在休眠及发芽小麦种子中发现几种可能不同的小分子量RNase。在发芽过程中,其中2种RNase的活性变化不明显,而另外2种RNase却分别表现出一种逐渐减弱和增强的趋势。
, http://www.100md.com
中图分类号: Q342 文献标识码: A 文章编号: 0379-4172(2000)05-0423-05
A Preliminary Analysis on a Group of Low Molecular Weight
RNases in Wheat and Related Species
ZHAO Hui LIU KunFan WANG DaoFWen
(National Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics,Chinese Academy of Sciences, Beijing 100101, China)
Abstract: By employing RNase activity gel analysis, we detected a novel group of RNases in wheat and related species. The molecular weight of the RNases varied from 8~14 kDa, which was lower than that of most plant RNases characterized previously. The small RNases expressed abundantly in seedlings and differed in their optimal pH and ionic requirement in digesting RNA substrate. Several members of the small RNases were detected in dormant and germinating wheat seeds. During germination, the activity of two RNases did not change significantly whereas that of the other two RNases showed a gradual pattern of decrease and increase, respectively.
, 百拇医药
Key words: RNase; wheat; germinating seeds; RNase activity gels
近年来发现植物核糖核酸酶(RNase)在植物生物学中起着越来越重要的作用,它们可参与RNA代谢、自交不亲和性、磷元素的再利用、木质部形成、适应外界胁迫及防御病原物的危害等过程[1,2]。到目前为止所报道的RNase分子量大多在16kDa以上,只有Yen和Green[3]的研究中初步描述了1个分子量为9kDa的RNase。
RNase在植物中的表达及功能一般是通过RNase功能胶进行研究,尽管近年来已逐渐开始应用分子遗传学手段来进行深入探索[4~6]。在植物的组织和细胞中,已发现多种RNase。在Arabidopsis成熟植株中,通过RNase功能胶分析,发现16种RNase[3]。离体培养的Zinnia叶肉细胞在被诱导转型分化为筛管分子的过程中,发现有4种RNase表达[7]。
, 百拇医药
对小麦RNase的研究也有一些报道。Barna等人[8]描述了小麦叶片在受到锈病侵染后胞外RNase活性增强的现象。Blank及其同事对正常及衰老小麦叶片中RNase活性的变化进行了比较[9~11]。Yen和Baenziger发现土壤中种植的小麦幼苗可表达15种RNase[12]。在我们的研究中,发现小麦及其近缘物种的幼苗及发芽小麦种子中既表达高分子量RNase,也表达低分子量RNase。由于前人已报道高分子量RNase(大于16kDa)的特性,因此,我们将主要讨论小分子量RNase(6.5~1.4kDa)的鉴定及表达特征。
1 材料和方法
1.1 小麦及其近缘物种材料
1.1.1 材料 二倍体小麦(AA)包括栽培一粒(T. monococcum L.), 野生一粒(T.boeoticum Boiss.);四倍体小麦(AABB)包括栽培二粒(T. dicoccum Schuebl.),野生二粒(T. dicoccoides Koern.),硬粒小麦SD012(T. durum Desf. SD012),硬粒小麦SD013(T. durum Desf. SD013), 圆锥小麦(T. turgidum L.), 二倍体山羊草(DD)为节节麦(Aegilops squarrosa L.),六倍体小麦(AABBDD)为中国春(T. aestivum L. cv. Chinese Spring)。
, http://www.100md.com
1.1.2 培养条件 土壤及培养皿。取上述物种
各5粒种子种于土壤中,温室白天温度25℃,夜间18℃,光照时间12h。同等数量种子培养在培养皿中,温箱白天温度25℃,夜间18℃,光照时间12h。
在发芽实验中,供试材料为中国春小麦种子。种子在去离子水中浸泡16h(在发芽过程中作为第1天),然后将其转移到润湿的滤低上面,同样在温箱中培养。在发芽的不同天数收集胚乳,抽提胚乳蛋白质,共抽提8次(每天1次)。
1.2 方法
1.2.1 蛋白质抽提及定量 当培养在土壤及培养皿中的幼苗长至5~6cm时,按照Blank和McKeon[10]的方法抽提叶片蛋白质。用同样的方法抽提胚乳蛋白质。然后将其分装成小份,贮存于-70℃冰箱中以防止蛋白质降解。蛋白质浓度用试剂盒(Bio朢ad)Bradford方法检测[13]。
, 百拇医药
1.2.2 12%SDS-聚丙烯酰胺凝胶,RNase及DNase功能胶分析 SDS-聚丙烯酰胺凝胶电泳的RNase功能胶电泳基本上是根据Blank等人[9,10,14]提出的方法,稍作改动。在蛋白质变性缓冲液中加入β-巯基乙醇(β-ME)。电泳后,用异丙醇缓冲液洗去胶中的SDS,然后用3种反应缓冲液(Ⅰ:0.1mol`/L NaAc, pH5.7;Ⅱ:0.1mol/L咪唑,pH8.0;Ⅲ: 0.1mol/L咪唑/0.2mol/L KCl,pH8.0)在37℃温育凝胶15h,使RNase充分降解底物小麦rRNA。最后用苯甲胺蓝染色。RNase功能胶中,在蓝色胶背景(由于未降解的小麦rRNA被染色所致)衬托下,RNase表现出明亮、清晰的条带。
DNase功能胶分析方法基本同上,只是在胶中加入小牛胸腺DNA作为反应底物。
实验中用预染的蛋白质分子量标准(6.5~175kDa,New England Biolabs)以衡量所检测的RNase分子量大小。
, 百拇医药
2 结果
2.1 小麦及其相关物种幼苗中小分子量RNase的表达
图版I-1a是典型的RNase功能胶,其中显示出高分子量RNase和低分子量RNase。图版I-1b和版I-1c,仅显示出低分子量RNase。酸性缓冲液(0.1mol/L NaAc,pH5.7)中,除了高分子量RNase(大于22.5kDa,图版I-1a)表达外,还有2条小分子量RNase带(8kDa和9.6kDa,图版I-1a)在8个物种中也表达出来。中性缓冲液(0.1mol/L 咪唑,pH8.0)中,小分子量RNase在几个物种中表达减弱,成为1条带(图版I-1b)。但是在含有K+的底物缓冲液(0.1mol/L 咪唑/0.2mol/L KCl,pH8.0)中,小分子量RNase的活性提高(图版I-1c),只有山羊草(泳道8)和中国春小麦(泳道9)的表达较弱。这些物种中,有的甚至可表达出4条小分子量RNase带(泳道1,3,4,6)。由于这些小分子量RNase以前未见报道,因此,我们进一步检测它们是否兼有降解单链DNA的能力。图版I-1d是典型的DNase功能胶。虽然在32.5kDa位置有很强的功能条带,但是在6.5~14kDa位置却检测不到功能信号(图版I-1d)。
, http://www.100md.com
对应于上述实验,我们同时又检测了培养于培养皿中的8个物种幼苗的RNase表达情况。从图版I-2中可以看出,小分子量RNase条带大量减少。在0.1mol/L NaAc(pH5.7)缓冲液中,只有极微弱的RNase条带(图版I-2a);在0.1mol/L 咪唑(pH8.0)缓冲液中,只有几个物种表达RNase活性较明显(图版I-2b,泳道1,3,9);在0.1mol/L 咪唑/0.2mol/L KCl(pH8.0)缓冲液中,只有1条RNase带表达(图版I-2c)。
2.2 发芽小麦种子中小分子量RNase的表达
抽提休眠种子及发芽不同天数的种子蛋白质,用于检测小分子量RNase的活性。图版I-3表示在3种缓冲液中所表达的4种可能不同的小分子量RNase(暂时命名为α、β、γ、τ)。休眠种子中可检测出RNase π、β和(图版I-3a~3c,泳道1),检测不出RNase τ。在萌发种子中,RNase π和β没有明显的变化趋势(图版I-3a,图版I-3b),而RNase 和τ却分别表现出一种逐渐减弱和增强的趋势(图版I-3c)。
, http://www.100md.com
3 讨论
在前人的研究中[9~12],已发现小麦含有多种RNase。这些实验中,蛋白质变性缓冲液中不含β-巯基乙醇(β-ME)。β-ME是一种还原剂,打断蛋白质分子内部及分子之间的二硫键。因此,前人所观察到的多种RNase有可能是由于二硫键的存在,而使蛋白质分子呈多种稳定的功能形式。我们的实验中蛋白质变性缓冲液中含有β-ME,所以获得的功能条带减少(图版I-1a)。功能条带数目的减少并不是由于加入β-ME而使功能胶的敏感性下降。因为在RNase功能胶中,每个蛋白样品上样量只需30~40g,而Yen和Baenziger[12]的实验中却需要100g。因此,我们认为分子间及分子内的二硫键对于植物表达多种RNases活性至关重要,而我们观察到的RNase条带是由单聚体RNase(monomeric RNase)引起的。
基于上述研究结果,小分子量RNase的功能及表达特征可总结如下。第一,RNase活性是RNA特异性的,检测不出它们对单链DNA起任何作用(图版I-1a~1d)。第二,在小麦极其近缘种叶片中(图版I-1a~1c)及萌发小麦种子中(图版I-3a~3c)存在多种小分子量RNase。这些酶在降解RNA过程中,随着pH值及缓冲液中离子浓度的变化而变化。单价阳离子(如K+)促进小分子量RNases在中性缓冲液中的活性(图版I-1b和图版I-1c)。第三,幼苗中RNase的表达随环境条件的变化而变化较大。复杂的生长环境(如土壤)可更加促进RNase活性的表达(图版I-1,图版I-2)。第四,在休眠及发芽小麦种子中可观察到几种可能不同的小分子量RNase(图版I-3)。在发芽种子中所表现出来的不同变化趋势,表明不同的RNase在休眠及发芽种子中有可能执行不同的生理功能(图版I-3)。
, 百拇医药
综上所述,通过应用RNase功能胶,我们对植物的小分子量RNase进行了初步研究。多种小分子量RNase的存在、在不同物种中这些RNase表达的保守性、以及在休眠及发芽种子中RNase的不同变化趋势表明这些小分子量RNase有可能具有重要的生理功能。将来,应采用分子遗传学分析以提高我们对这些RNase的进一步理解。
Explanation of Plate
1: Protein extracts (30g) from soil-rown seedlings of T. monococcum L. (lane 1), T. boeoticum Boiss. (lane 2), T.
, http://www.100md.com
dicoccum Schuebl. (lane 3), T. dicoccoides Koern. (lane 4), T. durum Desf. (lane 5), T. durum Desf. (lane 6), T. turgidum L. (lane 7), Aegilops squarrosa L. (lane 8) and T. aestivum L. var Chinese Spring (lane 9) were analyzed for RNase (la, lb and lc) and DNase (1d) activities. (1a) HMW and LMW RNases revealed in the substrate buffer 0.1mol/L NaAc, pH5.7. (1b) LMW RNases revealed in the substrate buffer 0.1mol/L Imidazole, pH8.0. (1c) LMW RNases revealed in the substrate buffer 0.1mol/L Imidazole/0.2 mol/L KCl, pH8.0. (1d) absence of LMW DNase activity bands in the 6.5~14.0 kDa region. 2: Detection of LMW RNases in the seedlings of Triticum and Aegilops species grown in petri dishes. Protein extracts (30g) from T. monococcum L. (lane 1), T. boeoticum Boiss. (lane 2), T. dicoccum Schuebl. (lane 3), T. dicoccoides Koern. (lane 4), T. durum Desf. SD012 (lane 5), T. durum Desf. SD013 (lane 6), T. turgidum L. (lane 7), Aegilops squarrosa L. (lane 8) and T. aestivum L. cv. Chinese Spring (lane 9) were analyzed for LMW RNase activities. (2a) only a low level of RNase activity was detecteded in the substrate buffer 0.1 mol/L NaAc, pH5.7. (2b) RNase activity
, 百拇医药
was detected for some species in the substrate buffer 0.1mol/L Imidazole, pH8.0. (2c) a single RNase activity was detected for all species in the substrate buffer 0.1 mol/L Imidazole/0.2mol/L KCl. 3: Detection of LMW RNases in dormant and germinanting wheat seeds. Protein extracts (30g) from dormant (lane 1) and germinating (lanes 2~9, representing seeds at different days of germination) seeds were analyzed for LMW RNase activities. (3a) the activity of RNase π, detectable in the substrate buffer 0.1 mol/L NaAc, pH5.7, was present in dormant seeds and did not change significantly during germination. This contrasted well with a 18.2 kDa HMW RNase (arrowed), whose activity was also present in dormant seeds but increased dramatically during germination. (3b) the activity of RNase β, detectable in the substrate buffer 0.1 mol/L Imidazole, pH 8.0, existed in dormant seeds and did not show significant changes during germination. (3c) the activity of RNase , detectable in the substrate buffer 0.1mol/L Imidazole/0.2mol/L KCl, existed in dormant seeds and showed a decreasing pattern during germination. In contrast, the activity of RNase τ, detectable in the same substrate buffer,did not exist in dormant seeds and showed an increasing pattern during germination
, 百拇医药
中国科学院重大项目特支经费资助(K295T-02-02-17)
参考文献
[1] Green P J. The ribonucleases of higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1994, 45: 421~445.
[2] Dodds P N, Clarke A E, Newbigin E. A molecular perspective on pollination in flowering plants. Cell, 1996, 85: 141~144.
[3] Yen Y, Green P J. Identification and properties of the major ribonucleases of Arabidopsis thaliana. Plant Physiol., 1991, 97: 1487~1493.
, 百拇医药
[4] Taylor C B, Green P J. Genes with homology to fungal and S-RNases are expressed in Arabidopsis thaliana. Plant Physiol., 1991, 96: 980~984.
[5] Kock M, Loffler A, Abel S, Glund K. cDNA structure and regulatory properties of a family of starvation-induced ribonucleases from tomato, Plant Mol. Biol., 1995, 27: 477~485.
[6] Ye Z-H, Droste D L. Isolation and characterization of cDNAs encoding xylogenesis-associated and wound-induced ribonucleases in Zinnia elegans L. Plant Mol. Biol., 1996, 30: 697~709.
, 百拇医药
[7] Thelen M P, Northcote D H. Identification and purification of a nuclease from Zinnia elegans L.: a potential marker for xylogenesis. Planta, 1989, 179: 181~195.
[8] Barna B, Ibenthal W B, Heitefuss R Extracellular RNase
activity in healthy and rust-infected wheat leaves, Physiol. Mol. Plant Pathol., 1989, 35: 151~160.
[9] Blank A, McKeon T A. Single-strand preferring nuclease in wheat leaves is increased in senescence and is negatively photoregulated. Proc. Natl. Acad. Sci. USA, 1989, 86: 3169~3173.
, 百拇医药
[10] Blank A, McKeon T A. Three RNases in senescent and nonsenescent wheat leaves. Plant Physiol., 1991a, 97: 1402~1408.
[11] Blank A, McKeon T A. Expression of three RNase activities during natural and dark-induced senescence of wheat leaves. Plant Physiol., 1991b, 97: 1409~1413.
[12] Yen Y, Baenziger P S. Identification, characterization, and comparison of RNA-degrading enzymes of wheat and barley. Biochem. Genet., 1993, 31: 133~145.
, 百拇医药
[13] Bradford M M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72: 248~254.
[14] Blank A, Sugiyama R H, Dekker C A. Activity staining of nucleolytic enzymes after sodium dodecyl sulfate-polyacrylamide gel eletrophoresis: use of aqueous isopropanol to remove detergent from gels. Anal. Biochem., 1982, 120: 267~275.
1999-05-28
1999-09-24, 百拇医药
单位:中国科学院遗传研究所植物细胞与染色体工程国家重点实验室, 北京 100101
关键词:Rnase;小麦;发芽种子;Rnase功能胶
遗传学报000507
摘要: 应用RNase功能胶体系,在小麦及其相关物种中发现1组小分子量核糖核酸酶(RNase)。RNase的分子量变化范围在6.5~14kDa间,低于已报道的大多数植物RNase的分子量。小分子
量RNase在幼苗中大量表达,并且在降解RNA底物时,随着缓冲液pH值及离子浓度的不同而有所变化。在休眠及发芽小麦种子中发现几种可能不同的小分子量RNase。在发芽过程中,其中2种RNase的活性变化不明显,而另外2种RNase却分别表现出一种逐渐减弱和增强的趋势。
, http://www.100md.com
中图分类号: Q342 文献标识码: A 文章编号: 0379-4172(2000)05-0423-05
A Preliminary Analysis on a Group of Low Molecular Weight
RNases in Wheat and Related Species
ZHAO Hui LIU KunFan WANG DaoFWen
(National Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics,Chinese Academy of Sciences, Beijing 100101, China)
Abstract: By employing RNase activity gel analysis, we detected a novel group of RNases in wheat and related species. The molecular weight of the RNases varied from 8~14 kDa, which was lower than that of most plant RNases characterized previously. The small RNases expressed abundantly in seedlings and differed in their optimal pH and ionic requirement in digesting RNA substrate. Several members of the small RNases were detected in dormant and germinating wheat seeds. During germination, the activity of two RNases did not change significantly whereas that of the other two RNases showed a gradual pattern of decrease and increase, respectively.
, 百拇医药
Key words: RNase; wheat; germinating seeds; RNase activity gels
近年来发现植物核糖核酸酶(RNase)在植物生物学中起着越来越重要的作用,它们可参与RNA代谢、自交不亲和性、磷元素的再利用、木质部形成、适应外界胁迫及防御病原物的危害等过程[1,2]。到目前为止所报道的RNase分子量大多在16kDa以上,只有Yen和Green[3]的研究中初步描述了1个分子量为9kDa的RNase。
RNase在植物中的表达及功能一般是通过RNase功能胶进行研究,尽管近年来已逐渐开始应用分子遗传学手段来进行深入探索[4~6]。在植物的组织和细胞中,已发现多种RNase。在Arabidopsis成熟植株中,通过RNase功能胶分析,发现16种RNase[3]。离体培养的Zinnia叶肉细胞在被诱导转型分化为筛管分子的过程中,发现有4种RNase表达[7]。
, 百拇医药
对小麦RNase的研究也有一些报道。Barna等人[8]描述了小麦叶片在受到锈病侵染后胞外RNase活性增强的现象。Blank及其同事对正常及衰老小麦叶片中RNase活性的变化进行了比较[9~11]。Yen和Baenziger发现土壤中种植的小麦幼苗可表达15种RNase[12]。在我们的研究中,发现小麦及其近缘物种的幼苗及发芽小麦种子中既表达高分子量RNase,也表达低分子量RNase。由于前人已报道高分子量RNase(大于16kDa)的特性,因此,我们将主要讨论小分子量RNase(6.5~1.4kDa)的鉴定及表达特征。
1 材料和方法
1.1 小麦及其近缘物种材料
1.1.1 材料 二倍体小麦(AA)包括栽培一粒(T. monococcum L.), 野生一粒(T.boeoticum Boiss.);四倍体小麦(AABB)包括栽培二粒(T. dicoccum Schuebl.),野生二粒(T. dicoccoides Koern.),硬粒小麦SD012(T. durum Desf. SD012),硬粒小麦SD013(T. durum Desf. SD013), 圆锥小麦(T. turgidum L.), 二倍体山羊草(DD)为节节麦(Aegilops squarrosa L.),六倍体小麦(AABBDD)为中国春(T. aestivum L. cv. Chinese Spring)。
, http://www.100md.com
1.1.2 培养条件 土壤及培养皿。取上述物种
各5粒种子种于土壤中,温室白天温度25℃,夜间18℃,光照时间12h。同等数量种子培养在培养皿中,温箱白天温度25℃,夜间18℃,光照时间12h。
在发芽实验中,供试材料为中国春小麦种子。种子在去离子水中浸泡16h(在发芽过程中作为第1天),然后将其转移到润湿的滤低上面,同样在温箱中培养。在发芽的不同天数收集胚乳,抽提胚乳蛋白质,共抽提8次(每天1次)。
1.2 方法
1.2.1 蛋白质抽提及定量 当培养在土壤及培养皿中的幼苗长至5~6cm时,按照Blank和McKeon[10]的方法抽提叶片蛋白质。用同样的方法抽提胚乳蛋白质。然后将其分装成小份,贮存于-70℃冰箱中以防止蛋白质降解。蛋白质浓度用试剂盒(Bio朢ad)Bradford方法检测[13]。
, 百拇医药
1.2.2 12%SDS-聚丙烯酰胺凝胶,RNase及DNase功能胶分析 SDS-聚丙烯酰胺凝胶电泳的RNase功能胶电泳基本上是根据Blank等人[9,10,14]提出的方法,稍作改动。在蛋白质变性缓冲液中加入β-巯基乙醇(β-ME)。电泳后,用异丙醇缓冲液洗去胶中的SDS,然后用3种反应缓冲液(Ⅰ:0.1mol`/L NaAc, pH5.7;Ⅱ:0.1mol/L咪唑,pH8.0;Ⅲ: 0.1mol/L咪唑/0.2mol/L KCl,pH8.0)在37℃温育凝胶15h,使RNase充分降解底物小麦rRNA。最后用苯甲胺蓝染色。RNase功能胶中,在蓝色胶背景(由于未降解的小麦rRNA被染色所致)衬托下,RNase表现出明亮、清晰的条带。
DNase功能胶分析方法基本同上,只是在胶中加入小牛胸腺DNA作为反应底物。
实验中用预染的蛋白质分子量标准(6.5~175kDa,New England Biolabs)以衡量所检测的RNase分子量大小。
, 百拇医药
2 结果
2.1 小麦及其相关物种幼苗中小分子量RNase的表达
图版I-1a是典型的RNase功能胶,其中显示出高分子量RNase和低分子量RNase。图版I-1b和版I-1c,仅显示出低分子量RNase。酸性缓冲液(0.1mol/L NaAc,pH5.7)中,除了高分子量RNase(大于22.5kDa,图版I-1a)表达外,还有2条小分子量RNase带(8kDa和9.6kDa,图版I-1a)在8个物种中也表达出来。中性缓冲液(0.1mol/L 咪唑,pH8.0)中,小分子量RNase在几个物种中表达减弱,成为1条带(图版I-1b)。但是在含有K+的底物缓冲液(0.1mol/L 咪唑/0.2mol/L KCl,pH8.0)中,小分子量RNase的活性提高(图版I-1c),只有山羊草(泳道8)和中国春小麦(泳道9)的表达较弱。这些物种中,有的甚至可表达出4条小分子量RNase带(泳道1,3,4,6)。由于这些小分子量RNase以前未见报道,因此,我们进一步检测它们是否兼有降解单链DNA的能力。图版I-1d是典型的DNase功能胶。虽然在32.5kDa位置有很强的功能条带,但是在6.5~14kDa位置却检测不到功能信号(图版I-1d)。
, http://www.100md.com
对应于上述实验,我们同时又检测了培养于培养皿中的8个物种幼苗的RNase表达情况。从图版I-2中可以看出,小分子量RNase条带大量减少。在0.1mol/L NaAc(pH5.7)缓冲液中,只有极微弱的RNase条带(图版I-2a);在0.1mol/L 咪唑(pH8.0)缓冲液中,只有几个物种表达RNase活性较明显(图版I-2b,泳道1,3,9);在0.1mol/L 咪唑/0.2mol/L KCl(pH8.0)缓冲液中,只有1条RNase带表达(图版I-2c)。
2.2 发芽小麦种子中小分子量RNase的表达
抽提休眠种子及发芽不同天数的种子蛋白质,用于检测小分子量RNase的活性。图版I-3表示在3种缓冲液中所表达的4种可能不同的小分子量RNase(暂时命名为α、β、γ、τ)。休眠种子中可检测出RNase π、β和(图版I-3a~3c,泳道1),检测不出RNase τ。在萌发种子中,RNase π和β没有明显的变化趋势(图版I-3a,图版I-3b),而RNase 和τ却分别表现出一种逐渐减弱和增强的趋势(图版I-3c)。
, http://www.100md.com
3 讨论
在前人的研究中[9~12],已发现小麦含有多种RNase。这些实验中,蛋白质变性缓冲液中不含β-巯基乙醇(β-ME)。β-ME是一种还原剂,打断蛋白质分子内部及分子之间的二硫键。因此,前人所观察到的多种RNase有可能是由于二硫键的存在,而使蛋白质分子呈多种稳定的功能形式。我们的实验中蛋白质变性缓冲液中含有β-ME,所以获得的功能条带减少(图版I-1a)。功能条带数目的减少并不是由于加入β-ME而使功能胶的敏感性下降。因为在RNase功能胶中,每个蛋白样品上样量只需30~40g,而Yen和Baenziger[12]的实验中却需要100g。因此,我们认为分子间及分子内的二硫键对于植物表达多种RNases活性至关重要,而我们观察到的RNase条带是由单聚体RNase(monomeric RNase)引起的。
基于上述研究结果,小分子量RNase的功能及表达特征可总结如下。第一,RNase活性是RNA特异性的,检测不出它们对单链DNA起任何作用(图版I-1a~1d)。第二,在小麦极其近缘种叶片中(图版I-1a~1c)及萌发小麦种子中(图版I-3a~3c)存在多种小分子量RNase。这些酶在降解RNA过程中,随着pH值及缓冲液中离子浓度的变化而变化。单价阳离子(如K+)促进小分子量RNases在中性缓冲液中的活性(图版I-1b和图版I-1c)。第三,幼苗中RNase的表达随环境条件的变化而变化较大。复杂的生长环境(如土壤)可更加促进RNase活性的表达(图版I-1,图版I-2)。第四,在休眠及发芽小麦种子中可观察到几种可能不同的小分子量RNase(图版I-3)。在发芽种子中所表现出来的不同变化趋势,表明不同的RNase在休眠及发芽种子中有可能执行不同的生理功能(图版I-3)。
, 百拇医药
综上所述,通过应用RNase功能胶,我们对植物的小分子量RNase进行了初步研究。多种小分子量RNase的存在、在不同物种中这些RNase表达的保守性、以及在休眠及发芽种子中RNase的不同变化趋势表明这些小分子量RNase有可能具有重要的生理功能。将来,应采用分子遗传学分析以提高我们对这些RNase的进一步理解。
Explanation of Plate
1: Protein extracts (30g) from soil-rown seedlings of T. monococcum L. (lane 1), T. boeoticum Boiss. (lane 2), T.
, http://www.100md.com
dicoccum Schuebl. (lane 3), T. dicoccoides Koern. (lane 4), T. durum Desf. (lane 5), T. durum Desf. (lane 6), T. turgidum L. (lane 7), Aegilops squarrosa L. (lane 8) and T. aestivum L. var Chinese Spring (lane 9) were analyzed for RNase (la, lb and lc) and DNase (1d) activities. (1a) HMW and LMW RNases revealed in the substrate buffer 0.1mol/L NaAc, pH5.7. (1b) LMW RNases revealed in the substrate buffer 0.1mol/L Imidazole, pH8.0. (1c) LMW RNases revealed in the substrate buffer 0.1mol/L Imidazole/0.2 mol/L KCl, pH8.0. (1d) absence of LMW DNase activity bands in the 6.5~14.0 kDa region. 2: Detection of LMW RNases in the seedlings of Triticum and Aegilops species grown in petri dishes. Protein extracts (30g) from T. monococcum L. (lane 1), T. boeoticum Boiss. (lane 2), T. dicoccum Schuebl. (lane 3), T. dicoccoides Koern. (lane 4), T. durum Desf. SD012 (lane 5), T. durum Desf. SD013 (lane 6), T. turgidum L. (lane 7), Aegilops squarrosa L. (lane 8) and T. aestivum L. cv. Chinese Spring (lane 9) were analyzed for LMW RNase activities. (2a) only a low level of RNase activity was detecteded in the substrate buffer 0.1 mol/L NaAc, pH5.7. (2b) RNase activity
, 百拇医药
was detected for some species in the substrate buffer 0.1mol/L Imidazole, pH8.0. (2c) a single RNase activity was detected for all species in the substrate buffer 0.1 mol/L Imidazole/0.2mol/L KCl. 3: Detection of LMW RNases in dormant and germinanting wheat seeds. Protein extracts (30g) from dormant (lane 1) and germinating (lanes 2~9, representing seeds at different days of germination) seeds were analyzed for LMW RNase activities. (3a) the activity of RNase π, detectable in the substrate buffer 0.1 mol/L NaAc, pH5.7, was present in dormant seeds and did not change significantly during germination. This contrasted well with a 18.2 kDa HMW RNase (arrowed), whose activity was also present in dormant seeds but increased dramatically during germination. (3b) the activity of RNase β, detectable in the substrate buffer 0.1 mol/L Imidazole, pH 8.0, existed in dormant seeds and did not show significant changes during germination. (3c) the activity of RNase , detectable in the substrate buffer 0.1mol/L Imidazole/0.2mol/L KCl, existed in dormant seeds and showed a decreasing pattern during germination. In contrast, the activity of RNase τ, detectable in the same substrate buffer,did not exist in dormant seeds and showed an increasing pattern during germination
, 百拇医药
中国科学院重大项目特支经费资助(K295T-02-02-17)
参考文献
[1] Green P J. The ribonucleases of higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1994, 45: 421~445.
[2] Dodds P N, Clarke A E, Newbigin E. A molecular perspective on pollination in flowering plants. Cell, 1996, 85: 141~144.
[3] Yen Y, Green P J. Identification and properties of the major ribonucleases of Arabidopsis thaliana. Plant Physiol., 1991, 97: 1487~1493.
, 百拇医药
[4] Taylor C B, Green P J. Genes with homology to fungal and S-RNases are expressed in Arabidopsis thaliana. Plant Physiol., 1991, 96: 980~984.
[5] Kock M, Loffler A, Abel S, Glund K. cDNA structure and regulatory properties of a family of starvation-induced ribonucleases from tomato, Plant Mol. Biol., 1995, 27: 477~485.
[6] Ye Z-H, Droste D L. Isolation and characterization of cDNAs encoding xylogenesis-associated and wound-induced ribonucleases in Zinnia elegans L. Plant Mol. Biol., 1996, 30: 697~709.
, 百拇医药
[7] Thelen M P, Northcote D H. Identification and purification of a nuclease from Zinnia elegans L.: a potential marker for xylogenesis. Planta, 1989, 179: 181~195.
[8] Barna B, Ibenthal W B, Heitefuss R Extracellular RNase
activity in healthy and rust-infected wheat leaves, Physiol. Mol. Plant Pathol., 1989, 35: 151~160.
[9] Blank A, McKeon T A. Single-strand preferring nuclease in wheat leaves is increased in senescence and is negatively photoregulated. Proc. Natl. Acad. Sci. USA, 1989, 86: 3169~3173.
, 百拇医药
[10] Blank A, McKeon T A. Three RNases in senescent and nonsenescent wheat leaves. Plant Physiol., 1991a, 97: 1402~1408.
[11] Blank A, McKeon T A. Expression of three RNase activities during natural and dark-induced senescence of wheat leaves. Plant Physiol., 1991b, 97: 1409~1413.
[12] Yen Y, Baenziger P S. Identification, characterization, and comparison of RNA-degrading enzymes of wheat and barley. Biochem. Genet., 1993, 31: 133~145.
, 百拇医药
[13] Bradford M M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72: 248~254.
[14] Blank A, Sugiyama R H, Dekker C A. Activity staining of nucleolytic enzymes after sodium dodecyl sulfate-polyacrylamide gel eletrophoresis: use of aqueous isopropanol to remove detergent from gels. Anal. Biochem., 1982, 120: 267~275.
1999-05-28
1999-09-24, 百拇医药