脑梗死黏附分子表达与溶栓治疗时间窗
作者:吉训明 贺能树 张云亭
单位:300052 天津医科大学总医院放射科
关键词:黏附分子;尿激酶;血栓溶解疗法;大鼠;单克隆抗体
中华放射学杂志000814 【摘要】 目的 研究选择性动脉内溶栓联合抗黏附分子抗体治疗对大鼠缺血性脑梗死黏附分子表达的影响,探讨溶栓治疗时间窗。方法 将85只血栓栓塞性大鼠大脑中动脉缺血模型随机分成A、B两组。再将每组随机分成3个亚组。A组研究缺血再灌注后细胞间黏附分子(intercellular adhension molecule-1, ICAM-1)表达的动态变化。B组通过观察缺血再灌注后大鼠神经功能缺陷、体重下降、MRI上长T2病变体积变化及缺血脑组织内ICAM-1和ICAM-1配体(Mac-1)表达情况,比较尿激酶联合抗ICAM-1抗体治疗(简称联合溶栓治疗)与单纯尿激酶治疗(简称单纯溶栓治疗)的疗效。结果 缺血30 min,再灌注24 h,ICAM-1表达开始增加。ICAM-1表达到达高峰的缺血时间为3 h。每个缺血时间点内,ICAM-1表达到达高峰的再灌注时间是48 h。缺血1 h,单纯溶栓治疗可减轻缺血脑组织内ICAM-1表达(阳性血管数为84±16比178±35,P<0.05)。而缺血6 h,单纯溶栓治疗则增加ICAM-1表达(阳性血管数为490±74比328±46,P<0.01)。与单纯溶栓治疗组相比,联合溶栓治疗组大鼠缺血6 h后,MRI上长T2体积缩小[(26.0±2.5)%比(38.6±3.5)%,P<0.05],体重下降[(12.2±1.3)%比(18.2±1.5)%,P<0.05]、ICAM-1(阳性血管数297±35比450±74,P<0.05)和Mac-1[阳性的白细胞数为(490±150)比(1 120±105),P<0.05]免疫反应明显减轻。与对照组比较,缺血6 h后,联合溶栓治疗组大鼠脑梗死体积有下降的趋势[(26.0±2.5)%比(39.9±2.9)%,P=0.055]。结论脑梗死黏附分子表达决定溶栓治疗时间窗,联合溶栓治疗可显著延长大鼠脑梗死溶栓治疗时间窗。
, http://www.100md.com
The relationship between expression of adhension molecules in the ischemic brain of rat and thrombolytic therapeutic time window
JI Xunming,HE Nengshu,ZHANG Yunting.
(Department of Radiology, the General Hospital, Tianjin Medical University, Tianjin 300052, China)
【Abstract】 Objective To study the effect of selective intra-arterial thrombolysis in combination with anti-ICAM-1 antibody on the expression of adhension molecules in rat ischemic brain and explore the thrombolytic therapeutic time-window. Methods Reversible cerebral ischemic models (n=85) were built by occluding the male Wistar rat middle cerebral arteries with fibre-rich clot. These 85 models were randomly divided into two groups: group A (n=49) and group B (n=36). Group A was subdivided into three groups to observe the expression of ICAM-1 at 7 different time points after embolizaton. Group B was subdivided into three groups to compare the therapeutic effect of combining urokinase and anti-ICAM-1 antibody with urokinase alone at 6 hours after embolization by observing the neurological deficits, body weight loss, the volume of long T2 lesions on MR pictures and the expression of ICAM-1 and Mac-1 at 24, 48 and 72 hours after embolization. One-way ANOVA were preformed to determine differences among the 3 subgroups in group B, and q test was performed to compare the differences between the subgroups. All data are presented as mean ± SE. Results ICAM-1 could be detected at 24 hours after embolization for 30 minutes. ICAM-1 expression peaked at 48 hours after administration of urokinase at every ischemic point. The ischemic time when the ICAM-1 expression reached the peak was 180 minutes after embolization. Thrombolytic therapy with inter-arterial perfusion of urokinase could decrease the expression of ICAM-1 (number of positive vessels 84±16 versus 178±35, P<0.05) 1 hour after embolization. But inter-arterial perfusion of urokinase increased the expression of ICAM-1 (number of positive vessels 450±74 versus 328±46, P<0.01)at 6 hour. At 6 hours after embolization, a significant reduction in lesion volumes on T2WI of MRI [(26.0±2.5)% versus(38.6±3.5)%, P<0.05 ], body weight loss[(12.2±1.3)% versus(18.2±1.5)%, P<0.05] and ICAM-1 positive vessels(297±35 versus 450 ±7,P<0.05). Mac-1immunoreactively positive neutrophils [(490±150) versus(1120±105),P<0.05] were found in rats treated with urokinase in combination with anti-ICAM-1 antibody compared with the rats treated with urokinase alone. Compared with the volume of control group, there are a tendency of reduction of volume in combining treatment group[(26.0±2.5)% versus(39.9±2.9)%, P=0.055]. Conclusion The thrombolytic therapeutic time window is decided by expression of adhension molecules and it can be prolonged for at least 6 hours after embolization by administration of combining urokinase and anti-ICAM-1 antibody in rats.
, 百拇医药
【Key words】 Adhension molecules; Urokinase; Thrombolytic therapy; Rat; Monoclonal antibodies
研究表明,继发于脑缺血或再灌注的炎性过程是导致缺血区血管内皮进一步受损和加重神经元缺血损害的关键步骤[1], 而黏附分子的过度表达是炎性过程的始动因素[2]。在黏附分子中, 细胞间黏附分子(intercellular adhension molecule-1, ICAM-1)及其配体Mac-1(CD11b/CD18)的过度表达是启动白细胞与内皮细胞初期黏附的决定因素[3]。本研究采用栓塞性大鼠大脑中动脉缺血模型, 研究动脉内溶栓与抗黏附分子抗体联合治疗对缺血性脑梗死黏附分子表达和脑梗死体积等的影响,验证联合治疗可延长脑梗死溶栓治疗时间窗的设想。
材料与方法
, 百拇医药
一、材料
Wistar雄性大鼠85只, 体重300~320 g。尿激酶剂量600 IU/kg,经聚乙烯导管缓慢持续灌注,时间超过30 min。用抗ICAM-1抗体(小鼠抗大鼠单克隆抗体,Clone:IA29,Phamingan Corp)和抗Mac-1抗体(兔抗人多克隆抗体,Seikaku Corp)检测缺血脑组织内ICAM-1和Mac-1的表达。灌注用抗ICAM-1抗体剂量为2 mg/kg,经导管缓慢灌注,时间超过30 min。安慰剂组用同样的方法灌注等量生理盐水。尿激酶和抗ICAM-1抗体的剂量选择参照文献[4,5]。
二、 模型制作
10%的水合氯醛400 mg/kg腹腔注射麻醉。将大鼠仰卧位固定,颈部正中切开分离右侧颈总动脉、颈外动脉和颈内动脉。将颈外动脉远端结扎、切断。从颈外动脉切口插入改良的聚乙烯导管,经颈内动脉向前推进1.5 mm至大脑中动脉开口处。将一整块富含纤维、放置24 h的自体血块(约1 μl)通过导管注入到大脑中动脉的开口处[6]。术中用热垫将大鼠直肠温度控制在(37±1)℃。模型成功的标准为出现确切神经功能缺陷和(或)MRI检查出现长T2信号[7]。
, 百拇医药
三、标本采集与免疫组织化学(以下简称免疫组化)检测
向大鼠腹腔内注射过量的水合氯醛,断头取脑组织。迅速用铝箔纸将脑组织包好置于液氮中保存。用超薄切片机(瑞典LKB-Ⅴ型)将距前囟0.7 mm脑组织切成8 μm厚冠状冰冻切片,丙酮固定10 min。用免疫组化方法(S-P法)检测缺血脑组织ICAM-1表达。取2 μm厚、距前囟后0.3 mm脑组织的冠状切片,石蜡包埋,测定Mac-1在中性粒细胞表面的表达情况。实验步骤按试剂盒操作说明进行。
四、实验分组
将大鼠随机分成A、B组:A组观察溶栓后黏附分子表达水平的动态变化,49只;B组观察尿激酶和抗ICAM-1抗体的联合治疗作用,36只。
将A组大鼠随机分成3组:(1)尿激酶治疗组,大脑中动脉闭塞30、60、120、180、240、300、360 min后,经PE-50导管注入尿激酶,21只,每个时间点各3只。这些大鼠在注入尿激酶后24、48和72 h进行MRI检查,随后处死取大脑。(2)安慰剂组,除用等量生理盐水代替尿激酶动脉灌注外,其他处理与尿激酶治疗组相同, 21只。(3)假手术组,动脉内注入尿激酶后24、48 和72 h处死大鼠取脑,7只。
, 百拇医药
将B组大鼠随机分成3组:(1)单独给予尿激酶治疗组,12只;(2)尿激酶和抗ICAM-1抗体联合治疗组,12只;(3)对照组,不给予任何治疗,12只。
五、联合治疗疗效观察
B组所有大鼠均在栓塞后48h进行体重、神经学缺陷和MRI上长T2信号病变体积测定,随即处死取脑组织。用改良Zea Longa 法进行神经功能评分[8]:没有神经功能缺陷,0分;右侧霍纳综合征,1分;左前爪不能伸直,2分;向左侧旋转,3分;向左侧转圈,4分。用电子衡器称大鼠的体重。体重的下降用占缺血前大鼠体重的百分比表示。在40倍物镜下计数整个大脑半球内ICAM-1免疫反应阳性的微血管数和脑实质内Mac-1免疫反应阳性的完整的中性粒细胞数[9]。
六、 MRI检查
采用GE 1.5 T MR机,冠状面快速自旋回波(FSE)T2WI序列的成像参数:视野 (FOV) 为8 cm×4 cm,层厚为3 mm,层间距为0.5 mm,TR 4 000 ms, TE 86 ms,矩阵512×256,2次激励,成像时间为301 s。采用直接法测量脑梗死体积,即梗死灶的面积×(层厚+层间距)×梗死出现的层面数[10](图1)。
, 百拇医药
七、统计学分析
采用F检验,如差异有显著性,用q检验再进行两两比较。黏附分子表达与MR上长T2信号体积之间的相关性用直线相关与回归进行分析。所有数据都用均数±标准误表示。
表1 B组大鼠尿激酶与抗ICAM-1抗体联合治疗作用结果分析(±s) 组别
动物数
(只)
ICAM-1阳性
血管数
脑神经功能评分
, http://www.100md.com
体重下
降(%)
脑梗死体积占
大脑半球体积(%)
Mac-1阳性中性
粒细胞数
中风6 h
再通48 h
单纯尿激酶治疗组
9
450±74
3.2±0.2
, http://www.100md.com 1.3±0.1
18.2±1.5
38.6±3.5
1 120±105〓
联合治疗组
12
297±35①
3.2±0.1
0.7±0.1②
12.2±1.3①
26.0±2.5①
, 百拇医药
490±150①
非治疗组
12
416±46③
3.1±0.1
1.2±0.2④
16.9±1.4
39.9±2.9⑤
1 058± 90〓
F值
4.37⑥
, http://www.100md.com
1.58
3.95⑥
4.24⑥
5.29⑥
84.54⑥
注:①表示联合治疗组与单纯尿激酶治疗组比较,P<0.05;②表示联合治疗组与单纯尿激酶治疗组比较,P=0.06;③表示联合治疗组与非治疗组比较,阳性血管数有减少趋势,P=0.05;④表示联合治疗组与非治疗组比较,神经功能评分未见改善,P>0.05;⑤表示联合治疗组与非治疗组比较,脑梗死体积有缩小趋势,P=0.055,F检验;⑥表示P<0.05,q检验
, 百拇医药
图1 用直接法测量MR图像上相同层面的梗死灶面积。左图为缺血1 h,再通48 h的联合治疗大鼠脑梗死的面积。右图为缺血6 h,再通48 h的单纯治疗大鼠的脑梗死面积。病变范围如箭头所示
结果
一、模型成功率
所有模型均出现确切的神经症状和(或)MRI上长T2信号灶。B组3只单纯尿激酶治疗大鼠在栓塞中风后24 h内死亡。尸检发现这些大鼠出现严重的脑水肿。这3只大鼠未纳入统计数据。
二、单纯尿激酶溶栓治疗后ICAM-1表达的动态变化
缺血30 min,再灌注24 h ICAM-1表达开始升高。各个缺血时间点内,ICAM-1表达达到高峰的时间为血管再通后48 h。单纯尿激酶治疗组大鼠的脑组织内ICAM-1表达到达高峰的最长缺血时间为3 h。假手术组大鼠的脑组织内未见ICAM-1免疫反应阳性血管。安慰剂组大鼠的同侧脑组织内可见广泛分布的ICAM-1免疫反应阳性血管。与同时间处死的安慰剂组大鼠相比,栓塞1 h后,动脉内灌注尿激酶大鼠的ICAM-1免疫反应阳性血管数在栓塞后48 h明显减轻(84±16 比 178±35, P<0.05),而栓塞后6 h应用尿激酶治疗大鼠的ICAM-1免疫反应阳性血管数在栓塞后48 h显著增多(448±74比328±46, P<0.01)(图2)。单纯尿激酶溶栓治疗组大鼠在缺血3 h内,缺血区ICAM-1的表达与MRI上长T2信号的体积呈正相关(r=0.37, P<0.05)。
, 百拇医药
图2 单纯尿激酶治疗后48 h同侧大脑半球内ICAM-1表达的动态变化
三、联合溶栓治疗作用
由表1可以看出,栓塞后6 h联合治疗组大鼠的ICAM-1和Mac-1免疫反应、体重减轻程度、MRI上脑梗死体积均较单纯尿激酶治疗组减轻或缩小。与非治疗组相比,除神经功能评分外,其余各项指标均减轻或缩小。
讨论
本研究模型成功率100%,我们认为严格的体重选择标准和导管插入深度是模型成功的关键。
实验表明,选择性动脉内溶栓治疗大鼠缺血性脑梗死,随着开始治疗时间的不同,有着不同的调节黏附分子血管免疫反应的能力。ICAM-1表达到达高峰的缺血时间为3 h,与学者们报道的大鼠缺血性脑梗死溶栓治疗时间窗为3 h的结论吻合[11]。提示溶栓治疗促使黏附分子表达上调,加剧炎性反应,可能是溶栓治疗再灌注损伤的机制。
, 百拇医药
本研究采用MR直接法测量脑梗死体积是因为MR对氢质子敏感,能确切反映缺血脑组织的水肿程度[12]。从脑梗死黏附分子表达与MRI上长T2病变体积之间的相关性可以推测黏附分子的过度表达所致的炎性反应是导致恶性水肿和缺血半暗区缩小乃至消失的重要原因[11]。
大鼠大脑中动脉栓塞后6 h开始进行溶栓治疗增加黏附分子表达,支持了需要进行联合治疗的理论[13]。本研究中,我们探讨了尿激酶和抗ICAM-1抗体联合治疗能减轻缺血后延迟溶栓治疗的不利作用。我们的资料提示,与单独应用尿激酶的溶栓治疗相比,脑缺血后6 h应用尿激酶与抗ICAM-1抗体的联合治疗可显著缩小脑梗死的体积。脑缺血后6 h, 尿激酶与抗ICAM-1抗体联合治疗组大鼠脑梗死体积与非治疗组相比有缩小的趋势(P=0.055)。这些资料支持了进行抗炎与动脉溶栓联合治疗的设想[7,13],提示应用抗ICAM-1抗体与尿激酶进行联合治疗可延长脑梗死溶栓治疗时间窗。
, 百拇医药
根据脑梗死黏附分子表达的临床研究报告及人脑血液供应和神经元密度与大鼠不同的特点[1],可以推测,人类缺血性脑梗死后动脉内溶栓与抗黏附分子抗体联合治疗的时间窗更长(理论上不短于18 h)。但由于影响缺血性脑梗死溶栓治疗时间窗的因素较多,如动脉粥样硬化、糖尿病等,人类缺血性脑梗死的联合溶栓治疗时间窗有待进一步研究[14]。
总之,脑梗死黏附分子的表达决定溶栓治疗时间窗。大鼠缺血性脑梗死单纯尿激酶溶栓治疗时间窗是3 h, 尿激酶与抗ICAM-1抗体联合溶栓治疗时间窗不短于6 h。
参考文献
1,Siesjo BK. Pathophysiology and treatment of focal cerebral ischemia. Part Ⅰ: pathophysiology . J Neurosurg, 1992, 77:169-184.
, 百拇医药
2,Prestigiacomo CJ, Kim SC, Connolly SE Jr, et al. CD18-mediated neutrophil recruitment contributes to the pathogenesis of reperfused but not nonreperfused stroke. Stroke, 1999,30:1110-1117.
3,Yanaka K, Speliman SR, McCarrthy JB, et al. Reduction of brain injury using heparin to inhibit leukocyte accumulation in a rat model of transient focal cerebral ischemia.Ⅰ: protective mechanism. J Neurosurg, 1996, 85:1102-1107.
4,Tamatani T, Miyasaka M. Identification of monoclonal antibody reactive with the rat homolog of ICAM-1 and evidence for a differential involvement of ICAM-1 in the adherence of resting versus activated lymphocytes to high endothinial cells. Int I mmunol, 1993, 2:166-172.
, 百拇医药
5,刘一之,倪才方,朱晓黎,等.缺血性脑血管病超急性期动脉内灌注尿激酶速率的动物实验研究. 中华放射学杂志,1997, 31:196-198.
6,Zhang RL, Chopp M, Zhang ZG, et al. A rat model of focal embolic cerebral ischemia. Brain Res, 1997, 766:83-92.
7,Zhang RL, Zhang ZG, Chopp M, et al. Thrombolysis with tissue plasminogen activator alters adhension molecule expression in the ischemic rat brain. Stroke, 1999, 30:624-629.
8,Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke, 1989, 20:84-91.
, 百拇医药
9,Zhang R, Chopp M, Zhang ZG, et al. The expression of P- and E-selectins in three models of middle cerebral artery occlusion.Brain Res, 1998, 785:207-214.
10,Lin TN, He YY, Wu G, et al. Effect of brain edema on infarct volume in a focal cerebral ischemia model in rats. Stroke, 1993, 24:117-121.
11,Garcia JH, Yoshida Y, Chen H, et al. Progression from ischemic injury to infarct following middle cerebral artery occlusion in the rat. Am J Pathol, 1993, 142:623-635.
, 百拇医药
12,Knight RA, Dereski MO, Helpern JA, et al. Magnetic resonance imaging assessment of evolving focal cerebral ischemia: comparison with histopathology in rats. Stroke, 1994, 25:1252-1262.
13,Bowes MP, Rothlein R, Fagan SC, et al. Monoclonal antibodies preventing leukocyte activation reduce experimental neurologic injury and enhance efficacy of thrombolytic therapy. Neurology, 1995, 45:815-819.
14,Zivin JA. Factors determining the therapeutic window for stroke. Neurology, 1998, 50:599-603.
(收稿日期:1999-09-27), 百拇医药
单位:300052 天津医科大学总医院放射科
关键词:黏附分子;尿激酶;血栓溶解疗法;大鼠;单克隆抗体
中华放射学杂志000814 【摘要】 目的 研究选择性动脉内溶栓联合抗黏附分子抗体治疗对大鼠缺血性脑梗死黏附分子表达的影响,探讨溶栓治疗时间窗。方法 将85只血栓栓塞性大鼠大脑中动脉缺血模型随机分成A、B两组。再将每组随机分成3个亚组。A组研究缺血再灌注后细胞间黏附分子(intercellular adhension molecule-1, ICAM-1)表达的动态变化。B组通过观察缺血再灌注后大鼠神经功能缺陷、体重下降、MRI上长T2病变体积变化及缺血脑组织内ICAM-1和ICAM-1配体(Mac-1)表达情况,比较尿激酶联合抗ICAM-1抗体治疗(简称联合溶栓治疗)与单纯尿激酶治疗(简称单纯溶栓治疗)的疗效。结果 缺血30 min,再灌注24 h,ICAM-1表达开始增加。ICAM-1表达到达高峰的缺血时间为3 h。每个缺血时间点内,ICAM-1表达到达高峰的再灌注时间是48 h。缺血1 h,单纯溶栓治疗可减轻缺血脑组织内ICAM-1表达(阳性血管数为84±16比178±35,P<0.05)。而缺血6 h,单纯溶栓治疗则增加ICAM-1表达(阳性血管数为490±74比328±46,P<0.01)。与单纯溶栓治疗组相比,联合溶栓治疗组大鼠缺血6 h后,MRI上长T2体积缩小[(26.0±2.5)%比(38.6±3.5)%,P<0.05],体重下降[(12.2±1.3)%比(18.2±1.5)%,P<0.05]、ICAM-1(阳性血管数297±35比450±74,P<0.05)和Mac-1[阳性的白细胞数为(490±150)比(1 120±105),P<0.05]免疫反应明显减轻。与对照组比较,缺血6 h后,联合溶栓治疗组大鼠脑梗死体积有下降的趋势[(26.0±2.5)%比(39.9±2.9)%,P=0.055]。结论脑梗死黏附分子表达决定溶栓治疗时间窗,联合溶栓治疗可显著延长大鼠脑梗死溶栓治疗时间窗。
, http://www.100md.com
The relationship between expression of adhension molecules in the ischemic brain of rat and thrombolytic therapeutic time window
JI Xunming,HE Nengshu,ZHANG Yunting.
(Department of Radiology, the General Hospital, Tianjin Medical University, Tianjin 300052, China)
【Abstract】 Objective To study the effect of selective intra-arterial thrombolysis in combination with anti-ICAM-1 antibody on the expression of adhension molecules in rat ischemic brain and explore the thrombolytic therapeutic time-window. Methods Reversible cerebral ischemic models (n=85) were built by occluding the male Wistar rat middle cerebral arteries with fibre-rich clot. These 85 models were randomly divided into two groups: group A (n=49) and group B (n=36). Group A was subdivided into three groups to observe the expression of ICAM-1 at 7 different time points after embolizaton. Group B was subdivided into three groups to compare the therapeutic effect of combining urokinase and anti-ICAM-1 antibody with urokinase alone at 6 hours after embolization by observing the neurological deficits, body weight loss, the volume of long T2 lesions on MR pictures and the expression of ICAM-1 and Mac-1 at 24, 48 and 72 hours after embolization. One-way ANOVA were preformed to determine differences among the 3 subgroups in group B, and q test was performed to compare the differences between the subgroups. All data are presented as mean ± SE. Results ICAM-1 could be detected at 24 hours after embolization for 30 minutes. ICAM-1 expression peaked at 48 hours after administration of urokinase at every ischemic point. The ischemic time when the ICAM-1 expression reached the peak was 180 minutes after embolization. Thrombolytic therapy with inter-arterial perfusion of urokinase could decrease the expression of ICAM-1 (number of positive vessels 84±16 versus 178±35, P<0.05) 1 hour after embolization. But inter-arterial perfusion of urokinase increased the expression of ICAM-1 (number of positive vessels 450±74 versus 328±46, P<0.01)at 6 hour. At 6 hours after embolization, a significant reduction in lesion volumes on T2WI of MRI [(26.0±2.5)% versus(38.6±3.5)%, P<0.05 ], body weight loss[(12.2±1.3)% versus(18.2±1.5)%, P<0.05] and ICAM-1 positive vessels(297±35 versus 450 ±7,P<0.05). Mac-1immunoreactively positive neutrophils [(490±150) versus(1120±105),P<0.05] were found in rats treated with urokinase in combination with anti-ICAM-1 antibody compared with the rats treated with urokinase alone. Compared with the volume of control group, there are a tendency of reduction of volume in combining treatment group[(26.0±2.5)% versus(39.9±2.9)%, P=0.055]. Conclusion The thrombolytic therapeutic time window is decided by expression of adhension molecules and it can be prolonged for at least 6 hours after embolization by administration of combining urokinase and anti-ICAM-1 antibody in rats.
, 百拇医药
【Key words】 Adhension molecules; Urokinase; Thrombolytic therapy; Rat; Monoclonal antibodies
研究表明,继发于脑缺血或再灌注的炎性过程是导致缺血区血管内皮进一步受损和加重神经元缺血损害的关键步骤[1], 而黏附分子的过度表达是炎性过程的始动因素[2]。在黏附分子中, 细胞间黏附分子(intercellular adhension molecule-1, ICAM-1)及其配体Mac-1(CD11b/CD18)的过度表达是启动白细胞与内皮细胞初期黏附的决定因素[3]。本研究采用栓塞性大鼠大脑中动脉缺血模型, 研究动脉内溶栓与抗黏附分子抗体联合治疗对缺血性脑梗死黏附分子表达和脑梗死体积等的影响,验证联合治疗可延长脑梗死溶栓治疗时间窗的设想。
材料与方法
, 百拇医药
一、材料
Wistar雄性大鼠85只, 体重300~320 g。尿激酶剂量600 IU/kg,经聚乙烯导管缓慢持续灌注,时间超过30 min。用抗ICAM-1抗体(小鼠抗大鼠单克隆抗体,Clone:IA29,Phamingan Corp)和抗Mac-1抗体(兔抗人多克隆抗体,Seikaku Corp)检测缺血脑组织内ICAM-1和Mac-1的表达。灌注用抗ICAM-1抗体剂量为2 mg/kg,经导管缓慢灌注,时间超过30 min。安慰剂组用同样的方法灌注等量生理盐水。尿激酶和抗ICAM-1抗体的剂量选择参照文献[4,5]。
二、 模型制作
10%的水合氯醛400 mg/kg腹腔注射麻醉。将大鼠仰卧位固定,颈部正中切开分离右侧颈总动脉、颈外动脉和颈内动脉。将颈外动脉远端结扎、切断。从颈外动脉切口插入改良的聚乙烯导管,经颈内动脉向前推进1.5 mm至大脑中动脉开口处。将一整块富含纤维、放置24 h的自体血块(约1 μl)通过导管注入到大脑中动脉的开口处[6]。术中用热垫将大鼠直肠温度控制在(37±1)℃。模型成功的标准为出现确切神经功能缺陷和(或)MRI检查出现长T2信号[7]。
, 百拇医药
三、标本采集与免疫组织化学(以下简称免疫组化)检测
向大鼠腹腔内注射过量的水合氯醛,断头取脑组织。迅速用铝箔纸将脑组织包好置于液氮中保存。用超薄切片机(瑞典LKB-Ⅴ型)将距前囟0.7 mm脑组织切成8 μm厚冠状冰冻切片,丙酮固定10 min。用免疫组化方法(S-P法)检测缺血脑组织ICAM-1表达。取2 μm厚、距前囟后0.3 mm脑组织的冠状切片,石蜡包埋,测定Mac-1在中性粒细胞表面的表达情况。实验步骤按试剂盒操作说明进行。
四、实验分组
将大鼠随机分成A、B组:A组观察溶栓后黏附分子表达水平的动态变化,49只;B组观察尿激酶和抗ICAM-1抗体的联合治疗作用,36只。
将A组大鼠随机分成3组:(1)尿激酶治疗组,大脑中动脉闭塞30、60、120、180、240、300、360 min后,经PE-50导管注入尿激酶,21只,每个时间点各3只。这些大鼠在注入尿激酶后24、48和72 h进行MRI检查,随后处死取大脑。(2)安慰剂组,除用等量生理盐水代替尿激酶动脉灌注外,其他处理与尿激酶治疗组相同, 21只。(3)假手术组,动脉内注入尿激酶后24、48 和72 h处死大鼠取脑,7只。
, 百拇医药
将B组大鼠随机分成3组:(1)单独给予尿激酶治疗组,12只;(2)尿激酶和抗ICAM-1抗体联合治疗组,12只;(3)对照组,不给予任何治疗,12只。
五、联合治疗疗效观察
B组所有大鼠均在栓塞后48h进行体重、神经学缺陷和MRI上长T2信号病变体积测定,随即处死取脑组织。用改良Zea Longa 法进行神经功能评分[8]:没有神经功能缺陷,0分;右侧霍纳综合征,1分;左前爪不能伸直,2分;向左侧旋转,3分;向左侧转圈,4分。用电子衡器称大鼠的体重。体重的下降用占缺血前大鼠体重的百分比表示。在40倍物镜下计数整个大脑半球内ICAM-1免疫反应阳性的微血管数和脑实质内Mac-1免疫反应阳性的完整的中性粒细胞数[9]。
六、 MRI检查
采用GE 1.5 T MR机,冠状面快速自旋回波(FSE)T2WI序列的成像参数:视野 (FOV) 为8 cm×4 cm,层厚为3 mm,层间距为0.5 mm,TR 4 000 ms, TE 86 ms,矩阵512×256,2次激励,成像时间为301 s。采用直接法测量脑梗死体积,即梗死灶的面积×(层厚+层间距)×梗死出现的层面数[10](图1)。
, 百拇医药
七、统计学分析
采用F检验,如差异有显著性,用q检验再进行两两比较。黏附分子表达与MR上长T2信号体积之间的相关性用直线相关与回归进行分析。所有数据都用均数±标准误表示。
表1 B组大鼠尿激酶与抗ICAM-1抗体联合治疗作用结果分析(±s) 组别
动物数
(只)
ICAM-1阳性
血管数
脑神经功能评分
, http://www.100md.com
体重下
降(%)
脑梗死体积占
大脑半球体积(%)
Mac-1阳性中性
粒细胞数
中风6 h
再通48 h
单纯尿激酶治疗组
9
450±74
3.2±0.2
, http://www.100md.com 1.3±0.1
18.2±1.5
38.6±3.5
1 120±105〓
联合治疗组
12
297±35①
3.2±0.1
0.7±0.1②
12.2±1.3①
26.0±2.5①
, 百拇医药
490±150①
非治疗组
12
416±46③
3.1±0.1
1.2±0.2④
16.9±1.4
39.9±2.9⑤
1 058± 90〓
F值
4.37⑥
, http://www.100md.com
1.58
3.95⑥
4.24⑥
5.29⑥
84.54⑥
注:①表示联合治疗组与单纯尿激酶治疗组比较,P<0.05;②表示联合治疗组与单纯尿激酶治疗组比较,P=0.06;③表示联合治疗组与非治疗组比较,阳性血管数有减少趋势,P=0.05;④表示联合治疗组与非治疗组比较,神经功能评分未见改善,P>0.05;⑤表示联合治疗组与非治疗组比较,脑梗死体积有缩小趋势,P=0.055,F检验;⑥表示P<0.05,q检验
, 百拇医药
图1 用直接法测量MR图像上相同层面的梗死灶面积。左图为缺血1 h,再通48 h的联合治疗大鼠脑梗死的面积。右图为缺血6 h,再通48 h的单纯治疗大鼠的脑梗死面积。病变范围如箭头所示
结果
一、模型成功率
所有模型均出现确切的神经症状和(或)MRI上长T2信号灶。B组3只单纯尿激酶治疗大鼠在栓塞中风后24 h内死亡。尸检发现这些大鼠出现严重的脑水肿。这3只大鼠未纳入统计数据。
二、单纯尿激酶溶栓治疗后ICAM-1表达的动态变化
缺血30 min,再灌注24 h ICAM-1表达开始升高。各个缺血时间点内,ICAM-1表达达到高峰的时间为血管再通后48 h。单纯尿激酶治疗组大鼠的脑组织内ICAM-1表达到达高峰的最长缺血时间为3 h。假手术组大鼠的脑组织内未见ICAM-1免疫反应阳性血管。安慰剂组大鼠的同侧脑组织内可见广泛分布的ICAM-1免疫反应阳性血管。与同时间处死的安慰剂组大鼠相比,栓塞1 h后,动脉内灌注尿激酶大鼠的ICAM-1免疫反应阳性血管数在栓塞后48 h明显减轻(84±16 比 178±35, P<0.05),而栓塞后6 h应用尿激酶治疗大鼠的ICAM-1免疫反应阳性血管数在栓塞后48 h显著增多(448±74比328±46, P<0.01)(图2)。单纯尿激酶溶栓治疗组大鼠在缺血3 h内,缺血区ICAM-1的表达与MRI上长T2信号的体积呈正相关(r=0.37, P<0.05)。
, 百拇医药
图2 单纯尿激酶治疗后48 h同侧大脑半球内ICAM-1表达的动态变化
三、联合溶栓治疗作用
由表1可以看出,栓塞后6 h联合治疗组大鼠的ICAM-1和Mac-1免疫反应、体重减轻程度、MRI上脑梗死体积均较单纯尿激酶治疗组减轻或缩小。与非治疗组相比,除神经功能评分外,其余各项指标均减轻或缩小。
讨论
本研究模型成功率100%,我们认为严格的体重选择标准和导管插入深度是模型成功的关键。
实验表明,选择性动脉内溶栓治疗大鼠缺血性脑梗死,随着开始治疗时间的不同,有着不同的调节黏附分子血管免疫反应的能力。ICAM-1表达到达高峰的缺血时间为3 h,与学者们报道的大鼠缺血性脑梗死溶栓治疗时间窗为3 h的结论吻合[11]。提示溶栓治疗促使黏附分子表达上调,加剧炎性反应,可能是溶栓治疗再灌注损伤的机制。
, 百拇医药
本研究采用MR直接法测量脑梗死体积是因为MR对氢质子敏感,能确切反映缺血脑组织的水肿程度[12]。从脑梗死黏附分子表达与MRI上长T2病变体积之间的相关性可以推测黏附分子的过度表达所致的炎性反应是导致恶性水肿和缺血半暗区缩小乃至消失的重要原因[11]。
大鼠大脑中动脉栓塞后6 h开始进行溶栓治疗增加黏附分子表达,支持了需要进行联合治疗的理论[13]。本研究中,我们探讨了尿激酶和抗ICAM-1抗体联合治疗能减轻缺血后延迟溶栓治疗的不利作用。我们的资料提示,与单独应用尿激酶的溶栓治疗相比,脑缺血后6 h应用尿激酶与抗ICAM-1抗体的联合治疗可显著缩小脑梗死的体积。脑缺血后6 h, 尿激酶与抗ICAM-1抗体联合治疗组大鼠脑梗死体积与非治疗组相比有缩小的趋势(P=0.055)。这些资料支持了进行抗炎与动脉溶栓联合治疗的设想[7,13],提示应用抗ICAM-1抗体与尿激酶进行联合治疗可延长脑梗死溶栓治疗时间窗。
, 百拇医药
根据脑梗死黏附分子表达的临床研究报告及人脑血液供应和神经元密度与大鼠不同的特点[1],可以推测,人类缺血性脑梗死后动脉内溶栓与抗黏附分子抗体联合治疗的时间窗更长(理论上不短于18 h)。但由于影响缺血性脑梗死溶栓治疗时间窗的因素较多,如动脉粥样硬化、糖尿病等,人类缺血性脑梗死的联合溶栓治疗时间窗有待进一步研究[14]。
总之,脑梗死黏附分子的表达决定溶栓治疗时间窗。大鼠缺血性脑梗死单纯尿激酶溶栓治疗时间窗是3 h, 尿激酶与抗ICAM-1抗体联合溶栓治疗时间窗不短于6 h。
参考文献
1,Siesjo BK. Pathophysiology and treatment of focal cerebral ischemia. Part Ⅰ: pathophysiology . J Neurosurg, 1992, 77:169-184.
, 百拇医药
2,Prestigiacomo CJ, Kim SC, Connolly SE Jr, et al. CD18-mediated neutrophil recruitment contributes to the pathogenesis of reperfused but not nonreperfused stroke. Stroke, 1999,30:1110-1117.
3,Yanaka K, Speliman SR, McCarrthy JB, et al. Reduction of brain injury using heparin to inhibit leukocyte accumulation in a rat model of transient focal cerebral ischemia.Ⅰ: protective mechanism. J Neurosurg, 1996, 85:1102-1107.
4,Tamatani T, Miyasaka M. Identification of monoclonal antibody reactive with the rat homolog of ICAM-1 and evidence for a differential involvement of ICAM-1 in the adherence of resting versus activated lymphocytes to high endothinial cells. Int I mmunol, 1993, 2:166-172.
, 百拇医药
5,刘一之,倪才方,朱晓黎,等.缺血性脑血管病超急性期动脉内灌注尿激酶速率的动物实验研究. 中华放射学杂志,1997, 31:196-198.
6,Zhang RL, Chopp M, Zhang ZG, et al. A rat model of focal embolic cerebral ischemia. Brain Res, 1997, 766:83-92.
7,Zhang RL, Zhang ZG, Chopp M, et al. Thrombolysis with tissue plasminogen activator alters adhension molecule expression in the ischemic rat brain. Stroke, 1999, 30:624-629.
8,Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke, 1989, 20:84-91.
, 百拇医药
9,Zhang R, Chopp M, Zhang ZG, et al. The expression of P- and E-selectins in three models of middle cerebral artery occlusion.Brain Res, 1998, 785:207-214.
10,Lin TN, He YY, Wu G, et al. Effect of brain edema on infarct volume in a focal cerebral ischemia model in rats. Stroke, 1993, 24:117-121.
11,Garcia JH, Yoshida Y, Chen H, et al. Progression from ischemic injury to infarct following middle cerebral artery occlusion in the rat. Am J Pathol, 1993, 142:623-635.
, 百拇医药
12,Knight RA, Dereski MO, Helpern JA, et al. Magnetic resonance imaging assessment of evolving focal cerebral ischemia: comparison with histopathology in rats. Stroke, 1994, 25:1252-1262.
13,Bowes MP, Rothlein R, Fagan SC, et al. Monoclonal antibodies preventing leukocyte activation reduce experimental neurologic injury and enhance efficacy of thrombolytic therapy. Neurology, 1995, 45:815-819.
14,Zivin JA. Factors determining the therapeutic window for stroke. Neurology, 1998, 50:599-603.
(收稿日期:1999-09-27), 百拇医药