小儿急性淋巴细胞白血病P16蛋白表达的研究
作者:朱易萍 廖清奎 李钦伯 罗春华 杨先军 李丰益
单位:朱易萍(610041 成都,华西医科大学附属第二医院儿科);廖清奎(610041 成都,华西医科大学附属第二医院儿科);李钦伯(610041 成都,华西医科大学附属第二医院儿科);罗春华(610041 成都,华西医科大学附属第二医院儿科);杨先军(610041 成都,华西医科大学附属第二医院儿科);李丰益(610041 成都,华西医科大学附属第二医院儿科)
关键词:白血病,淋巴细胞,急性;蛋白质P16;免疫组织化学
中华儿科杂志000704 【摘要】 目的 探讨P16蛋白表达异常在小儿急性淋巴细胞白血病(ALL)发病中的意义。方法 应用免疫细胞化学SP法检测了52例初治ALL、20例正常对照小儿的P16蛋白的表达。结果 初治ALL中P16蛋白表达阳性率为42%,明显低于正常对照组(95%)(P<0.01)。正常对照P16蛋白弱阳性表达占80%。在ALL阳性表达者中,强阳性占73%(16/22),弱阳性占5%(1/22)。T系与 B系ALL中 P16蛋白缺失率分别为80%(8/10)和58%(18/31)(P>0.05)。在P16表达阳性的B系ALL中,强阳性占77% (10/13)。结论 P16失活导致细胞周期G1/S检查点功能低下,在ALL的发生、发展过程中具有重要的作用。P16蛋白高表达亦为不利因素,可能通过抑制细胞凋亡参与部分B系ALL的发病;而P16蛋白失活导致细胞增殖加速,与T系ALL的发病更密切。
, http://www.100md.com
The expression of P16 protein in childhood acute lymphoblastic leukemia
ZHU Yiping, LIAO Qingkui, LI Qinbo, et al. Second Affiliated Hospital, West China University of Medical Sciences, Chengdu 610041, China
【Abstract】 Objective The tumor suppressor gene P16 mapped at 9p21. P16 as a negative regulatory protein of cell cycle plays a role in inhibition of cell division and proliferation. Recently, it has been reported that the homozygous deletion of P16 gene was much higher in childhood acute lymphoblastic leukemia(ALL), especially in T-ALL, than other types of leukemia. But it is difficult to find the abnormalities of the gene regulation sequence with the ordinary molecularbiological techniques. Study on protein activity could finally reflect gene function in tumor cells. Thereafter, we detected the expression of P16 protein, and explored the relationship with immunophenotypes in childhood ALL and the significance in the pathogenesis of ALL. Methods Fifty-two recently diagnosed childhood ALL patients aged from 1 year 2 months to 14 years including 31 boys and 21 girls were selected as experiment group. Twenty healthy children aged from 2 months to 9 years, 13 boys and 7 girls, were in the control group. The patients included 10 T-ALL, 9 early pre-B ALL, 14 C-ALL, 4 pre-B ALL, and 4 B-cell ALL. The biotin-streptavidin method was used to detect the P16 protein. Cell samples were pre-incubated with hydrogen peroxide (3%) for 20 min at room temperature, and with non-immune goat serum (10%) for 20 min at 37℃. Primary antibodies (polyclonal antibody, Santa Crue, dilution 1∶50) were applied and incubated for 12 hr at 4℃. The secondary antibodies were biotinylated goat anti-rabbit IgG (1∶50 dilution) and incubated for 30 min at 37℃, after that the streptavidin-biotinylated-peroxidase (SP) complex (dilution 1∶200, 30 min), 37℃ was added. Finally, peroxidase activity was visualized by adding DAB, which formed a yellowish-brown product, counterstain was performed with hematoxylin. The staining was graded as negative (-), weakly positive (+), positive(++) and strongly positive (+++). Results The positive expression rate of P16 protein in childhood ALL patients was 42%, obviously lower than that in normal group (95%, P<0.001). The lower level expression (+) of P16 protein in normal group was 80%, while in ALL, the ratio of strongly positive (+++) over positive expressions was 73% (16/22), the ratio of weak positive (+) over positive expression was 5%
, 百拇医药
(1/22). The deletion of P16 protein expression was found in 8/10 of T-lineage ALL (80%) and in 18/31 of B-lineage ALL (58%) patients, respectively (P>0.05). In the subtype of B-lineage ALL , the deletion of P16 protein expression occurred in 3/9 of early pre-B ALL (33%), 7/14 of C-ALL (50%), 4/4 of pre-B ALL (100%) and 4/4 of B-cell ALL (100%). The degree of P16 protein expression in pre-B ALL and B-cell was lower than that in pre-B ALL and C-ALL by Ridit analysis. The strong positive expression of P16 protein was revealed in 77% of B-lineage ALL. Conclusion The P16 inactivation could suppress the function of G1/S checkpoint in cell cycle, which plays a very important role in the leukemogenesis and cancer progression. The enhanced expression of P16 protein may be related to the leukemogenesis in some groups of B-lineage ALL by prolonging leukemic cell survival, in contrast, P16 inactivation which results in the higher proliferative activity may associate closely with the development of cancer in T-lineage ALL.
, http://www.100md.com
【Key words】 Leukemia, lymphocytic, acute; Protein P16; Immunohistochemistry
P16基因是定位于染色体9p21的抑癌基因。P16蛋白是人类发现的第一个直接控制细胞周期的细胞固有蛋白,对细胞的生长和增殖起抑制作用。近年来国外对P16基因水平的研究较多,发现在小儿急性淋巴细胞白血病(ALL),尤其T系ALL中P16基因的纯合缺失较其他类型的白血病明显增高,但常规分子生物学技术尚难发现基因调控序列或非编码区的异常,并且即使基因无异常,并不意味着蛋白是否有活性或降解异常。对蛋白的研究能最终反映基因在肿瘤组织中的功能状态。为此,我们应用免疫细胞化学法研究了52例初治小儿ALL的 P16蛋白的表达水平及其与免疫分型的关系,旨在认识P16蛋白表达异常在小儿ALL发病中的作用。
对象和方法
一、对象
, 百拇医药
1997年5月~1999年1月我院儿科门诊和病房收治的初治ALL患儿共52例,其中男31例,女21例;年龄1岁2个月~14岁,中位年龄6.5岁。复发病例3例,均为男性。正常对照组20例,其中男13例,女7例;年龄1岁2个月~9岁,中位年龄5岁。
FAB分型:按照急性淋巴细胞白血病诊疗标准[1],经骨髓穿刺涂片检查及细胞化学染色确诊。
免疫学分型:取骨髓或外周血制备细胞涂片。要求外周血或骨髓原始+幼稚细胞≥80%。采用免疫细胞化学SP方法。单克隆抗体及SP试剂盒购自丹麦DAKO公司,以阳性细胞数≥20%为阳性(+),以<20%为阴性(-)。
根据MIC协作组的建议及膜表面标志分为:(1)T系ALL:CD+5、CD+7;(2)前前B-ALL(Early PreB-ALL):CD+19、CD-10、CyIg-、SmIg-;(3)普通型ALL(C-ALL):CD+19、CD+10、CyIg-、SmIg-;(4)前B-ALL(PreB-ALL):CD+19、CD+/-10、CyIg+、SmIg-;(5)成熟B-ALL(B-ALL):CD+19、CD-10、CyIg+/-、SmIg+。
, 百拇医药
双表型杂合性白血病:在同一患者≥20%的白血病细胞上同时表达两个细胞系列特异性标志。
二、方法
1. 标本制备: 取初治患儿化疗前骨髓2 ml或外周血4 ml,分离单个核细胞,取50 μl细胞悬液滴于防脱胶处理的玻片上,或骨髓直接涂片,白血病细胞占0.80以上,37℃干燥,冷丙酮固定10 min,置于-20℃保存。对照组取非白血病且骨髓象正常者骨髓,以同法制备标本。
2. 免疫组化染色:采用常规SP免疫组化染色法。标本置3%H2O2,室温处理20 min,依次加10%羊血清,I抗(兔抗人P16多克隆抗体,1∶50稀释,Santa Cruz产品,美国),生物素标记II抗(1∶200稀释)及SP复合物(1∶200稀释),滴加DAB显色液,苏木素复染。以淋巴瘤阳性片为阳性对照,以PBS液代替I抗为阴性对照。阳性染色呈棕黄色细颗粒状,弥漫分布于细胞核或细胞浆上。油镜下计数至少500个白血病细胞, 阳性细胞数<5%为(-);5%~25%为(+);26%~50%为(++);>50%为强阳性(+++)。
, http://www.100md.com
3. 数据由SPSS统计软件处理:应用χ2检验、校正χ2检验、四格表精确概率法及Ridit分析。
结果
一、P16蛋白在小儿ALL中的表达
P16蛋白阳性染色呈棕黄色细颗粒状,大多弥漫分布于细胞浆中,强阳性可呈簇状分布并覆盖细胞核。阴性对照无着色。P16蛋白的表达及表达程度的分布见表1。
表1 小儿ALL 的P16蛋白阳性表达率及
表达程度的分布情况 组 别
例数
P16蛋白表达程度(例数)
, http://www.100md.com 阳性率(%)
-
+
++
+++
初治组
(52)
(30)
(1)
(5)
(16)
(42)
L1型
, http://www.100md.com
11
5
1
1
4
55
L2型
32
20
0
3
9
40
L3型
, http://www.100md.com
6
2
0
1
3
4/6
淋巴肉瘤白血病
3
3
0
0
0
0
复发组
, http://www.100md.com
3
3
0
0
0
0
对照组
20
1
16
3
0
95
注:( )内代表L1、L2、L3型及淋巴肉瘤白血病的总例数或总阳性率 正常对照骨髓单个核细胞P16蛋白阳性表达率为95%,大多呈低水平表达(+),占80%。
, 百拇医药
ALL初治组P16蛋白的阳性表达率低于对照组,χ2=16.998,P<0.001。但其表达程度分布经Ridit分析差异无显著意义,这是由于对照组阳性率虽高,但表达程度较弱,80%为(+);ALL组阳性率虽低,但阳性者中96%(21/22)在(++)以上。ALL各型间表达程度经Ridit分析,淋巴肉瘤白血病低于L1、L2、L3 各组。3例骨髓复发者均无P16蛋白的表达。
初治ALL的 P16蛋白表达呈两级分化趋势,表达阴性者与强阳性者明显增多,强阳性占阳性例数的73%(16/22),弱阳性占阳性例数的5%(1/22)。
二、P16蛋白表达与免疫分型的关系(表2)
T系 ALL P16蛋白表达缺失率为80%(8/10),B系为58%(18/31),差异无显著意义(χ2=1.568,P>0.05)。B系各型P16蛋白表达程度分布经Ridit分析,Pre-B和B-ALL低于Early pre-B 和C-ALL两型,P<0.05。由于例数较少,B系各型间差异尚不明显(P>0.05)。在P16蛋白表达阳性的B系ALL中,以强阳性(+++)者居多,占77% (10/13)。
, 百拇医药
表2 小儿ALL各免疫分型组P16蛋白
表达程度的分布情况 组别
例数
P16蛋白表达程度(例数)
表达缺失率(%)
-
+
++
+++
T系ALL
10
8
, http://www.100md.com 1
1
0
80
B系ALL
(31)
(18)
(0)
(3)
(10)
(58)
Early pre-B
9
, 百拇医药
3
0
1
5
3/9
C-ALL
14
7
0
2
5
50
Pre-B
4
, 百拇医药
4
0
0
0
4/4
B-ALL
4
4
0
0
0
4/4
T、B双表型
1
, 百拇医药
1
0
0
0
1/1
淋粒双表型
2
1
1
0
0
1/2
注:( )内为B系ALL的总例数或总表达缺失率
, 百拇医药
讨论
有核细胞的增殖周期是由多种周期素(cyclins)和周期素依赖激酶(CDKs)组成激活的复合物正性调控细胞周期。同时由周期素依赖激酶抑制剂(cyclin-dependent kinase inhibitor, CDKI)负向调节,使细胞周期达到平衡。在细胞周期进程中存在G1/S检查点,通过监测细胞分子的损伤,确保周期转换的正确性[2]。野生型P16蛋白作为CDKI家族中的一员,抑制周期素D-CDK4/CDK6复合物的形成或其活性,进一步阻滞了底物pRb的磷酸化,使pRb与转录因子E2F结合,抑制转录,细胞阻滞于G1期,以维持其有序增殖。P16蛋白失活导致G1/S检查点功能低下,含有异常基因组的细胞可能复制病态的DNA,导致肿瘤的发生、发展[3]。
本研究结果显示,在正常小儿的骨髓单个核细胞中P16蛋白呈低水平表达,大多为弱阳性(+),与国外的报道相符[4]。初治ALL的P16蛋白阳性表达率明显低于正常对照,P16蛋白表达缺失率高达58%,高于Wolm等[5]报道的结果(36%,ABC法),也较国外报道的P16基因纯合缺失率高(小儿平均为39%)[6]。结果提示P16蛋白表达缺失较基因缺失更普遍,有可能存在基因调控序列或转录、转录后等水平的异常影响蛋白的表达,因此P16蛋白表达缺陷在ALL发生和发展中起重要作用。3例复发的ALL和3例由非霍奇金病(NHL)转变的淋巴肉瘤白血病均无P16蛋白表达,提示P16蛋白失活可能参与了疾病的进展。
, http://www.100md.com
白血病细胞免疫学分型较单纯的形态学分型更能反映疾病的本质及生物学特征。国外的研究多数认为T系ALL 的P16基因缺失率明显高于B系ALL,但对P16蛋白与免疫学分型的关系无明确的结论。我们发现T系ALL P16蛋白表达缺失率占80%,有高于B系ALL(58%)的倾向,但无统计学意义,提示P16蛋白缺失在ALL中是一种较普遍的现象,其失活在T系与B系ALL的发病中可能起同样重要的作用。小儿B系ALL是一组包括了不同生物学特征的异质性群体,Ohnishi等[7]发现,伴t(1; 19)及Burkitt型ALL(L3)P16基因缺失率低。我们发现B系ALL各亚型中以前B-ALL和成熟B-ALL P16蛋白表达程度分布明显低于其它型别,既然B系ALL各亚型之间P16蛋白的表达存在差异,因此仅仅在T系与B系ALL之间的比较,可能意义不大。最好增加样本量,对ALL各亚型单独进行分析。
本研究发现小儿ALL P16蛋白表达呈两级分化趋势,以P16阴性和强阳性者居多,强阳性者多分布于B系ALL。Wolowiec等[8]研究发现,B系ALL (成熟B-ALL除外)中抗凋亡蛋白Bcl-2呈高水平表达。Mekki等[9]应用蛋白印迹(western blot)定量分析进一步发现B系ALL P16表达量较T系ALL明显增高,且与Bcl-2呈正相关,P16阴性表达及P16高表达者无病生存期均缩短,提示P16的高表达与P16失活同为不利因素。 P16表达水平不一可能反映了不同的肿瘤发生机制,P16高表达可能通过Bcl-2的作用使分化不成熟的细胞寿命延长,或通过pRb诱导G1期阻滞而抑制凋亡。这些机制可能参与了部分B系ALL(P16表达阳性)的发病。相反,在T系ALL中P16基因及其表达缺失相对多见,有报道与细胞增殖有关的CDK1和增殖细胞核抗原呈高水平表达,表明细胞增殖加速与T系ALL发病的机制更密切[8]。
, 百拇医药
参考文献
1,张之南, 主编. 血液病诊断及疗效标准. 第2版. 北京: 科学出版社, 1998. 184.
2,Hart Well LH, Weinert TA. Checkpoints: controls that ensure the order of cell cycle events. Science, 1989, 246: 629-634.
3,Nobori T, Miura K, Wu DJ, et al. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancer. Nature, 1994, 368: 753-756.
4,Li Y, Michael A, Jerry W, et al. Transcriptional repression of the D-type cyclin-dependant kinase inhibitor P16 by the retinoblastoma susceptibility gene product pRb. Cancer Res, 1994, 54: 6078-6082.
, 百拇医药
5,Wolm M, Koomagi R, Stammler G, et al. Prognostic implications of cyclins (D1, E, A), cyclin-dependent kinase (CDK2, CDK4) and tumor-suppressor gene (pRb, P16 INK4A) in childhood acute lymphoblastic leukemia. Int J Cancer, 1997, 74: 508-512.
6,Drexler HG. Review of alteration of the cyclin-dependent kinase inhibitor INK4 family genes p15, P16, p18 and p19 in human leukemia-lymphoma cells. Leukemia, 1998, 12: 845-859.
7,Ohnishi H, Hanada K, Horibe K, et al. Homozygous deletions of P16/MTS1 and p15/MTS2 genes are frequent in t(1; 19)-generative but not t(1; 19)-positive B precursor acute lymphoblastic leukemia in childhood. Leukemia, 1996, 10: 1104-1110.
, http://www.100md.com
8,Wolowiec D, Mekki Y, Efrence P, et al. Differential expression of cell proliferation regulatory proteins in B-and T-lineage acute lymphoblastic leukemias. Br J Hematol, 1996, 95: 518-523.
9,Mekki Y, Catallo R, Bertrand Y, et al. Enhanced expression of P16 ink4a is associated with a poor prognosis in childhood acute lymphoblastic leukemia. Leukemia, 1999, 13: 181-189.
(收稿日期:1999-07-30), 百拇医药
单位:朱易萍(610041 成都,华西医科大学附属第二医院儿科);廖清奎(610041 成都,华西医科大学附属第二医院儿科);李钦伯(610041 成都,华西医科大学附属第二医院儿科);罗春华(610041 成都,华西医科大学附属第二医院儿科);杨先军(610041 成都,华西医科大学附属第二医院儿科);李丰益(610041 成都,华西医科大学附属第二医院儿科)
关键词:白血病,淋巴细胞,急性;蛋白质P16;免疫组织化学
中华儿科杂志000704 【摘要】 目的 探讨P16蛋白表达异常在小儿急性淋巴细胞白血病(ALL)发病中的意义。方法 应用免疫细胞化学SP法检测了52例初治ALL、20例正常对照小儿的P16蛋白的表达。结果 初治ALL中P16蛋白表达阳性率为42%,明显低于正常对照组(95%)(P<0.01)。正常对照P16蛋白弱阳性表达占80%。在ALL阳性表达者中,强阳性占73%(16/22),弱阳性占5%(1/22)。T系与 B系ALL中 P16蛋白缺失率分别为80%(8/10)和58%(18/31)(P>0.05)。在P16表达阳性的B系ALL中,强阳性占77% (10/13)。结论 P16失活导致细胞周期G1/S检查点功能低下,在ALL的发生、发展过程中具有重要的作用。P16蛋白高表达亦为不利因素,可能通过抑制细胞凋亡参与部分B系ALL的发病;而P16蛋白失活导致细胞增殖加速,与T系ALL的发病更密切。
, http://www.100md.com
The expression of P16 protein in childhood acute lymphoblastic leukemia
ZHU Yiping, LIAO Qingkui, LI Qinbo, et al. Second Affiliated Hospital, West China University of Medical Sciences, Chengdu 610041, China
【Abstract】 Objective The tumor suppressor gene P16 mapped at 9p21. P16 as a negative regulatory protein of cell cycle plays a role in inhibition of cell division and proliferation. Recently, it has been reported that the homozygous deletion of P16 gene was much higher in childhood acute lymphoblastic leukemia(ALL), especially in T-ALL, than other types of leukemia. But it is difficult to find the abnormalities of the gene regulation sequence with the ordinary molecularbiological techniques. Study on protein activity could finally reflect gene function in tumor cells. Thereafter, we detected the expression of P16 protein, and explored the relationship with immunophenotypes in childhood ALL and the significance in the pathogenesis of ALL. Methods Fifty-two recently diagnosed childhood ALL patients aged from 1 year 2 months to 14 years including 31 boys and 21 girls were selected as experiment group. Twenty healthy children aged from 2 months to 9 years, 13 boys and 7 girls, were in the control group. The patients included 10 T-ALL, 9 early pre-B ALL, 14 C-ALL, 4 pre-B ALL, and 4 B-cell ALL. The biotin-streptavidin method was used to detect the P16 protein. Cell samples were pre-incubated with hydrogen peroxide (3%) for 20 min at room temperature, and with non-immune goat serum (10%) for 20 min at 37℃. Primary antibodies (polyclonal antibody, Santa Crue, dilution 1∶50) were applied and incubated for 12 hr at 4℃. The secondary antibodies were biotinylated goat anti-rabbit IgG (1∶50 dilution) and incubated for 30 min at 37℃, after that the streptavidin-biotinylated-peroxidase (SP) complex (dilution 1∶200, 30 min), 37℃ was added. Finally, peroxidase activity was visualized by adding DAB, which formed a yellowish-brown product, counterstain was performed with hematoxylin. The staining was graded as negative (-), weakly positive (+), positive(++) and strongly positive (+++). Results The positive expression rate of P16 protein in childhood ALL patients was 42%, obviously lower than that in normal group (95%, P<0.001). The lower level expression (+) of P16 protein in normal group was 80%, while in ALL, the ratio of strongly positive (+++) over positive expressions was 73% (16/22), the ratio of weak positive (+) over positive expression was 5%
, 百拇医药
(1/22). The deletion of P16 protein expression was found in 8/10 of T-lineage ALL (80%) and in 18/31 of B-lineage ALL (58%) patients, respectively (P>0.05). In the subtype of B-lineage ALL , the deletion of P16 protein expression occurred in 3/9 of early pre-B ALL (33%), 7/14 of C-ALL (50%), 4/4 of pre-B ALL (100%) and 4/4 of B-cell ALL (100%). The degree of P16 protein expression in pre-B ALL and B-cell was lower than that in pre-B ALL and C-ALL by Ridit analysis. The strong positive expression of P16 protein was revealed in 77% of B-lineage ALL. Conclusion The P16 inactivation could suppress the function of G1/S checkpoint in cell cycle, which plays a very important role in the leukemogenesis and cancer progression. The enhanced expression of P16 protein may be related to the leukemogenesis in some groups of B-lineage ALL by prolonging leukemic cell survival, in contrast, P16 inactivation which results in the higher proliferative activity may associate closely with the development of cancer in T-lineage ALL.
, http://www.100md.com
【Key words】 Leukemia, lymphocytic, acute; Protein P16; Immunohistochemistry
P16基因是定位于染色体9p21的抑癌基因。P16蛋白是人类发现的第一个直接控制细胞周期的细胞固有蛋白,对细胞的生长和增殖起抑制作用。近年来国外对P16基因水平的研究较多,发现在小儿急性淋巴细胞白血病(ALL),尤其T系ALL中P16基因的纯合缺失较其他类型的白血病明显增高,但常规分子生物学技术尚难发现基因调控序列或非编码区的异常,并且即使基因无异常,并不意味着蛋白是否有活性或降解异常。对蛋白的研究能最终反映基因在肿瘤组织中的功能状态。为此,我们应用免疫细胞化学法研究了52例初治小儿ALL的 P16蛋白的表达水平及其与免疫分型的关系,旨在认识P16蛋白表达异常在小儿ALL发病中的作用。
对象和方法
一、对象
, 百拇医药
1997年5月~1999年1月我院儿科门诊和病房收治的初治ALL患儿共52例,其中男31例,女21例;年龄1岁2个月~14岁,中位年龄6.5岁。复发病例3例,均为男性。正常对照组20例,其中男13例,女7例;年龄1岁2个月~9岁,中位年龄5岁。
FAB分型:按照急性淋巴细胞白血病诊疗标准[1],经骨髓穿刺涂片检查及细胞化学染色确诊。
免疫学分型:取骨髓或外周血制备细胞涂片。要求外周血或骨髓原始+幼稚细胞≥80%。采用免疫细胞化学SP方法。单克隆抗体及SP试剂盒购自丹麦DAKO公司,以阳性细胞数≥20%为阳性(+),以<20%为阴性(-)。
根据MIC协作组的建议及膜表面标志分为:(1)T系ALL:CD+5、CD+7;(2)前前B-ALL(Early PreB-ALL):CD+19、CD-10、CyIg-、SmIg-;(3)普通型ALL(C-ALL):CD+19、CD+10、CyIg-、SmIg-;(4)前B-ALL(PreB-ALL):CD+19、CD+/-10、CyIg+、SmIg-;(5)成熟B-ALL(B-ALL):CD+19、CD-10、CyIg+/-、SmIg+。
, 百拇医药
双表型杂合性白血病:在同一患者≥20%的白血病细胞上同时表达两个细胞系列特异性标志。
二、方法
1. 标本制备: 取初治患儿化疗前骨髓2 ml或外周血4 ml,分离单个核细胞,取50 μl细胞悬液滴于防脱胶处理的玻片上,或骨髓直接涂片,白血病细胞占0.80以上,37℃干燥,冷丙酮固定10 min,置于-20℃保存。对照组取非白血病且骨髓象正常者骨髓,以同法制备标本。
2. 免疫组化染色:采用常规SP免疫组化染色法。标本置3%H2O2,室温处理20 min,依次加10%羊血清,I抗(兔抗人P16多克隆抗体,1∶50稀释,Santa Cruz产品,美国),生物素标记II抗(1∶200稀释)及SP复合物(1∶200稀释),滴加DAB显色液,苏木素复染。以淋巴瘤阳性片为阳性对照,以PBS液代替I抗为阴性对照。阳性染色呈棕黄色细颗粒状,弥漫分布于细胞核或细胞浆上。油镜下计数至少500个白血病细胞, 阳性细胞数<5%为(-);5%~25%为(+);26%~50%为(++);>50%为强阳性(+++)。
, http://www.100md.com
3. 数据由SPSS统计软件处理:应用χ2检验、校正χ2检验、四格表精确概率法及Ridit分析。
结果
一、P16蛋白在小儿ALL中的表达
P16蛋白阳性染色呈棕黄色细颗粒状,大多弥漫分布于细胞浆中,强阳性可呈簇状分布并覆盖细胞核。阴性对照无着色。P16蛋白的表达及表达程度的分布见表1。
表1 小儿ALL 的P16蛋白阳性表达率及
表达程度的分布情况 组 别
例数
P16蛋白表达程度(例数)
, http://www.100md.com 阳性率(%)
-
+
++
+++
初治组
(52)
(30)
(1)
(5)
(16)
(42)
L1型
, http://www.100md.com
11
5
1
1
4
55
L2型
32
20
0
3
9
40
L3型
, http://www.100md.com
6
2
0
1
3
4/6
淋巴肉瘤白血病
3
3
0
0
0
0
复发组
, http://www.100md.com
3
3
0
0
0
0
对照组
20
1
16
3
0
95
注:( )内代表L1、L2、L3型及淋巴肉瘤白血病的总例数或总阳性率 正常对照骨髓单个核细胞P16蛋白阳性表达率为95%,大多呈低水平表达(+),占80%。
, 百拇医药
ALL初治组P16蛋白的阳性表达率低于对照组,χ2=16.998,P<0.001。但其表达程度分布经Ridit分析差异无显著意义,这是由于对照组阳性率虽高,但表达程度较弱,80%为(+);ALL组阳性率虽低,但阳性者中96%(21/22)在(++)以上。ALL各型间表达程度经Ridit分析,淋巴肉瘤白血病低于L1、L2、L3 各组。3例骨髓复发者均无P16蛋白的表达。
初治ALL的 P16蛋白表达呈两级分化趋势,表达阴性者与强阳性者明显增多,强阳性占阳性例数的73%(16/22),弱阳性占阳性例数的5%(1/22)。
二、P16蛋白表达与免疫分型的关系(表2)
T系 ALL P16蛋白表达缺失率为80%(8/10),B系为58%(18/31),差异无显著意义(χ2=1.568,P>0.05)。B系各型P16蛋白表达程度分布经Ridit分析,Pre-B和B-ALL低于Early pre-B 和C-ALL两型,P<0.05。由于例数较少,B系各型间差异尚不明显(P>0.05)。在P16蛋白表达阳性的B系ALL中,以强阳性(+++)者居多,占77% (10/13)。
, 百拇医药
表2 小儿ALL各免疫分型组P16蛋白
表达程度的分布情况 组别
例数
P16蛋白表达程度(例数)
表达缺失率(%)
-
+
++
+++
T系ALL
10
8
, http://www.100md.com 1
1
0
80
B系ALL
(31)
(18)
(0)
(3)
(10)
(58)
Early pre-B
9
, 百拇医药
3
0
1
5
3/9
C-ALL
14
7
0
2
5
50
Pre-B
4
, 百拇医药
4
0
0
0
4/4
B-ALL
4
4
0
0
0
4/4
T、B双表型
1
, 百拇医药
1
0
0
0
1/1
淋粒双表型
2
1
1
0
0
1/2
注:( )内为B系ALL的总例数或总表达缺失率
, 百拇医药
讨论
有核细胞的增殖周期是由多种周期素(cyclins)和周期素依赖激酶(CDKs)组成激活的复合物正性调控细胞周期。同时由周期素依赖激酶抑制剂(cyclin-dependent kinase inhibitor, CDKI)负向调节,使细胞周期达到平衡。在细胞周期进程中存在G1/S检查点,通过监测细胞分子的损伤,确保周期转换的正确性[2]。野生型P16蛋白作为CDKI家族中的一员,抑制周期素D-CDK4/CDK6复合物的形成或其活性,进一步阻滞了底物pRb的磷酸化,使pRb与转录因子E2F结合,抑制转录,细胞阻滞于G1期,以维持其有序增殖。P16蛋白失活导致G1/S检查点功能低下,含有异常基因组的细胞可能复制病态的DNA,导致肿瘤的发生、发展[3]。
本研究结果显示,在正常小儿的骨髓单个核细胞中P16蛋白呈低水平表达,大多为弱阳性(+),与国外的报道相符[4]。初治ALL的P16蛋白阳性表达率明显低于正常对照,P16蛋白表达缺失率高达58%,高于Wolm等[5]报道的结果(36%,ABC法),也较国外报道的P16基因纯合缺失率高(小儿平均为39%)[6]。结果提示P16蛋白表达缺失较基因缺失更普遍,有可能存在基因调控序列或转录、转录后等水平的异常影响蛋白的表达,因此P16蛋白表达缺陷在ALL发生和发展中起重要作用。3例复发的ALL和3例由非霍奇金病(NHL)转变的淋巴肉瘤白血病均无P16蛋白表达,提示P16蛋白失活可能参与了疾病的进展。
, http://www.100md.com
白血病细胞免疫学分型较单纯的形态学分型更能反映疾病的本质及生物学特征。国外的研究多数认为T系ALL 的P16基因缺失率明显高于B系ALL,但对P16蛋白与免疫学分型的关系无明确的结论。我们发现T系ALL P16蛋白表达缺失率占80%,有高于B系ALL(58%)的倾向,但无统计学意义,提示P16蛋白缺失在ALL中是一种较普遍的现象,其失活在T系与B系ALL的发病中可能起同样重要的作用。小儿B系ALL是一组包括了不同生物学特征的异质性群体,Ohnishi等[7]发现,伴t(1; 19)及Burkitt型ALL(L3)P16基因缺失率低。我们发现B系ALL各亚型中以前B-ALL和成熟B-ALL P16蛋白表达程度分布明显低于其它型别,既然B系ALL各亚型之间P16蛋白的表达存在差异,因此仅仅在T系与B系ALL之间的比较,可能意义不大。最好增加样本量,对ALL各亚型单独进行分析。
本研究发现小儿ALL P16蛋白表达呈两级分化趋势,以P16阴性和强阳性者居多,强阳性者多分布于B系ALL。Wolowiec等[8]研究发现,B系ALL (成熟B-ALL除外)中抗凋亡蛋白Bcl-2呈高水平表达。Mekki等[9]应用蛋白印迹(western blot)定量分析进一步发现B系ALL P16表达量较T系ALL明显增高,且与Bcl-2呈正相关,P16阴性表达及P16高表达者无病生存期均缩短,提示P16的高表达与P16失活同为不利因素。 P16表达水平不一可能反映了不同的肿瘤发生机制,P16高表达可能通过Bcl-2的作用使分化不成熟的细胞寿命延长,或通过pRb诱导G1期阻滞而抑制凋亡。这些机制可能参与了部分B系ALL(P16表达阳性)的发病。相反,在T系ALL中P16基因及其表达缺失相对多见,有报道与细胞增殖有关的CDK1和增殖细胞核抗原呈高水平表达,表明细胞增殖加速与T系ALL发病的机制更密切[8]。
, 百拇医药
参考文献
1,张之南, 主编. 血液病诊断及疗效标准. 第2版. 北京: 科学出版社, 1998. 184.
2,Hart Well LH, Weinert TA. Checkpoints: controls that ensure the order of cell cycle events. Science, 1989, 246: 629-634.
3,Nobori T, Miura K, Wu DJ, et al. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancer. Nature, 1994, 368: 753-756.
4,Li Y, Michael A, Jerry W, et al. Transcriptional repression of the D-type cyclin-dependant kinase inhibitor P16 by the retinoblastoma susceptibility gene product pRb. Cancer Res, 1994, 54: 6078-6082.
, 百拇医药
5,Wolm M, Koomagi R, Stammler G, et al. Prognostic implications of cyclins (D1, E, A), cyclin-dependent kinase (CDK2, CDK4) and tumor-suppressor gene (pRb, P16 INK4A) in childhood acute lymphoblastic leukemia. Int J Cancer, 1997, 74: 508-512.
6,Drexler HG. Review of alteration of the cyclin-dependent kinase inhibitor INK4 family genes p15, P16, p18 and p19 in human leukemia-lymphoma cells. Leukemia, 1998, 12: 845-859.
7,Ohnishi H, Hanada K, Horibe K, et al. Homozygous deletions of P16/MTS1 and p15/MTS2 genes are frequent in t(1; 19)-generative but not t(1; 19)-positive B precursor acute lymphoblastic leukemia in childhood. Leukemia, 1996, 10: 1104-1110.
, http://www.100md.com
8,Wolowiec D, Mekki Y, Efrence P, et al. Differential expression of cell proliferation regulatory proteins in B-and T-lineage acute lymphoblastic leukemias. Br J Hematol, 1996, 95: 518-523.
9,Mekki Y, Catallo R, Bertrand Y, et al. Enhanced expression of P16 ink4a is associated with a poor prognosis in childhood acute lymphoblastic leukemia. Leukemia, 1999, 13: 181-189.
(收稿日期:1999-07-30), 百拇医药