环氧-二十碳三烯酸:一类内皮衍生性超极化因子
作者:张立克 王雯 丁鼎武
单位:(首都医科大学病理生理教研室,北京100054)
关键词:内皮细胞舒血管因子;肌,平滑,血管
中国病理生理杂志000227 [中图分类号] 331.3+6 [文献标识码] A
[文章编号] 1000-4718(2000)02-0184-04
Epoxyeicosatrienoic acids:A kind of endothelium derived hyperpolarizing factor
ZHANG Li-ke,WANG Wen,DING Ding-wu
, http://www.100md.com (Department of Pathophysiology,Capital University of Medical Sciences,Beijing 100054, China)
【A Review】 The endothelium derived hyperpolarizing factor (EDHF) has been paied attention to since the late 1980s. But it is not clear which are EDHF. The article reviewed the EDHF works and epoxyeicosatrienoic acids (EETs),an important kind of EDHF.
[MeSH] Endothelium-derived relating factor; Muscle, smooth, vascular
, 百拇医药
自从1980年Furchgott等[1]发现内皮细胞释放内皮衍生性舒张因子(endothelium derived relaxing factor,EDRF )以来,血管内皮细胞在调节血管舒缩方面的作用引起极大关注。随着对EDRF研究的深入,发现在内皮完整的离体血管上,抑制一氧化氮(nitric oxide ,NO)和 前列环素(prostaglandin , PGI2)合成之后,乙酰胆碱等物质所致血管舒张并未完全消除,这说明内皮细胞还可产生另外一类舒血管物质。Chen等[2]研究了乙酰胆碱所致离体平滑肌舒张机制,发现内皮细胞可释放一种未明物质,可以使平滑肌细胞膜超极化,这种内皮依赖性超极化物质,不同于NO和PGI2,称其为内皮衍生性超极化因子(endothelium derived hyperpolarizing factor, EDHF)。 鉴于NO和PGI2也可引起部分血管平滑肌超极化而扩张,Cohen等[3]曾将EDHF分为广义和狭义两种。NO和PGI2属于广义的EDHF,狭义的EDHF可能包括某些活性氧,例如H2O2,O2,花生四烯酸脂氧化酶产物及花生四烯酸细胞色素P450单氧化酶产物。但多数研究者认为EDHF是区别于NO和PGI2的第三类内皮衍生性舒张血管物质[4~6 ]。本文按照后一种观点将有关EDHF及近来被瞩目的一类EDHF,环氧-二十碳三烯酸(epoxyeicosatrienoic acids , EETs)[6,7]的工作进行综述。
, 百拇医药
一、EDHF的概述
EDHF自血管内皮细胞释放,作用在平滑肌细胞膜,主要通过开放钙敏感性钾通道(Ca2+-sensitive potassium channel,Kca)通道等机制使之超极化,导致血管舒张。
血管中EDHF主要由内皮细胞产生,弥散到其相邻的平滑肌细胞起作用[3~6 ]。多种激素或生物活性物质(如乙酰胆碱、mechacholine、缓激肽、P物质、组胺、ADP、内皮素、血管活性肠肽、降钙素基因相关肽等)作用于内皮细胞膜上相应的受体,激活磷脂酶C(phospholipase C, PLC),催化磷酸肌醇(phosphoinositide,PI)分解为三磷酸肌醇(IP3)和甘油二酯(DG)。IP3升高可促进细胞内储存Ca2+释放,使细胞内游离Ca2+增加[ 8]。而血管内切应力(sheer stress)改变也可作用于内皮细胞,通过G蛋白介导的Ca2+内流,使细胞内游离Ca2+增加[9]。内皮细胞内Ca2+增加既直接引起EDHF释放,又可使内皮细胞膜上Kca开放,随着K+外流增加,进一步促进Ca2+内流,通过正反馈机制增加内皮细胞释放EDHF。
, 百拇医药
EDHF使平滑肌细胞膜超极化并引起其舒张。Cohen等[3]、 Chen等[4]和Feletou等[5]发现,抑制NO及PGI2的生成后,乙酰胆碱可以引起一过性血管平滑肌超极化,以及一过性内皮依赖性血管舒张。EDHF开通钾通道造成血管平滑肌超极化已被公认,但涉及何种K+通道,是否还有其他通道参与,尚有争议。不少学者指出[7,10-13],Kca与超极化作用密切相关,KCa阻滞剂四乙胺(tetraethylammonium,TEA)对内皮依赖性超极化有很强的抑制作用。Cohen等[3]认为高电导型KCa(charybdotoxin是其特异性阻滞剂)的开放参与超极化;Hecker等[7]的实验结果却表明主要是低电导型KCa(apamin是其特异性阻滞剂)参与,高电导型KCa的作用极小。也有报导ATP-敏感性钾通道(ATP-sensitive potassium channel,KATP)也参与了平滑肌超极化[13,14]。但Feletou等[5]的结果表明,NO引起的血管平滑肌超极化才通过KATP开放,而EDHF引起的超极化主要由Kca开通所致。曾有报道,Na+-K+ATP酶激活[15]和CI—通道灭活[16]机制参与EDHF引起冠脉和主动脉的超极化。但是Zygmunt等[17]的工作表明,上述两种通道均未参与EDHF致肝动脉平滑肌的超极化作用。平滑肌细胞超极化后如何引起其舒张,一种观点认为,平滑肌细胞超极化可抑制电压依赖性Ca2+通道的开放,使胞浆内Ca2+减少而引起舒张[3,8,14,]。另一种观点认为,K+通道激活剂所致细胞超极化后,可使平滑肌膜PLC抑制。当IP3生成减少使细胞内Ca2+动员减少;而DG生成减少使蛋白激酶C介导的Ca2+敏感性下降,这均可引起平滑肌舒张。K+通道激活剂chromakalin可单纯通过开放K+通道使平滑肌细胞超极化而舒张,与Ca2+通道抑制无关,即是其佐证[3]。
, 百拇医药
EDHF在多方面不同于NO和PGI2。乙酰胆碱引起EDHF释放通过激活内皮细胞M1受体,而引起NO释放则通过激活内皮细胞M2受体[18];NO舒张血管通过释放cGMP而实现,而EDHF舒张血管则无cGMP释放,主要与钾通道开放有关[3];一氧化氮合成酶和脂氧和酶抑制剂均对EDHF的功能无影响,但哇巴因(ouabain)、TEA等钾通道抑制剂及细胞外钾浓度增高可以抑制、而钾通道开放剂可以模拟EDHF的作用[2,4]。
总之,EDHF是不同于NO和PGI2的第三类内皮衍生性舒张血管物质。
二、 EETs对血管的作用
EETs是花生四烯酸的细胞色素P450 单氧化酶代谢产物,分为4种类型:5,6-EET、8,9-EET、11,12-EET和14,15-EET。其可受mechacholine、乙酰胆碱、缓激肽等物质激发由血管内皮细胞产生;开放血管平滑肌细胞膜KCa 通道,使平滑肌细胞膜超极化而舒张;其舒张血管作用能被KCa通道阻滞剂和细胞外高K+所阻断。这完全符合EDHF的特征。
, 百拇医药
实验证实,花生四烯酸细胞色素P450 代谢与内皮依赖性血管舒张有关。Rosolowsky等[19]发现花生四烯酸可导致牛冠状动脉环舒张,环氧化酶抑制剂消炎痛可将花生四烯酸所致扩冠作用削减50%;当向冠脉环孵育液中加入SKF525A(一种细胞色素P450抑制剂)后,扩冠作用同样被削减50%;而当同时加入消炎痛和SKF525A后,花生四烯酸的舒血管作用几乎完全被抑制。表明花生四烯酸经细胞色素P450和环氧化酶代谢后的产物,才是引起血管舒张的物质。Fukao等[20] 报导抑制NO及PGI2生成后,乙酰胆碱可引起鼠肠系膜动脉内皮依赖性超极化,表明存在EDHF;而SKF525A可以完全消除上述作用,也表明EDHF是细胞色素P450代谢产物。Campbell等的研究结果与之相似[6]。他们发现,mechacholine也可刺激冠脉内皮细胞释放一种扩血管物质,细胞色素P450抑制剂SKF525A、miconazole可抑制此反应。经HPLC和GC/MS技术鉴定,证明此扩血管物质为EETs。
, 百拇医药
一些工作证实了EETs对血管平滑肌有直接作用。Proctor等[21] 通过电视显微镜观察EETs对大鼠小肠微循环的影响,发现4种EETs均有浓度依赖性扩张微动脉、提高微循环血流量作用,强度依次为5,6- EET,8,9-EET,11,12-EET,14,15-EET。Feletou等[5]和Adeagbo等[22]分别对兔后肢和大鼠肠系膜血管床的研究结果也得出相同结论。在离体血管上的研究也是如此。Carroll等[23]在大鼠中央尾动脉孵育液中加入一定浓度的5,6-EET,发现5,6-EET可产生剂量依赖性扩血管作用,可明显降低血管阻力,调节局部血管紧张度。Gebremedhin等[24]的研究则表明,5,6-;8,9-和11,12-EET均可对猫大脑中动脉环产生浓度依赖性的舒张反应,其中8,9-和11,12-EET的作用强于同浓度的5,6-EET。Fukao等[20]也发现11,12-EET使离体肠系膜动脉舒张。Folton等[25]、Oltman等[26]、Hayabuohi等[27]等均发现4种EETs引起冠状动脉内皮依赖性超极化和舒张。Hecker等[7]和Oltman等[26]的工作还证实,给剥去内皮的冠状动脉以EETs仍然引起舒血管反应,表明EETs直接作用在平滑肌细胞上。总之EETs是一类很强的血管舒张剂,可直接舒张包括冠脉在内的大多数血管平滑肌。
, http://www.100md.com
EETs舒张血管的机制涉及血管平滑肌细胞膜KCa开放及超极化。Campbell等[6] 报道,mechacholine可以刺激冠脉内皮细胞释放EETs;KCa 阻滞剂TEA、charybdotoxin和细胞外高K+都可阻断被释放的4种EETs的扩冠作用;而KATP阻滞剂glibenclamide不影响EETs的作用;应用膜片钳技术研究平滑肌细胞膜电位的变化,发现mechacholine可使细胞膜超极化;细胞色素P450抑制剂SKF525A、miconazole则可抑制此超极化反应;表明EETs通过开放KCa而造成平滑肌细胞膜超极化。与Campbell等的结果相似,Gebremedhin等[24]发现,8,9-和11,12-EET均能提高K+通道的开放频率及平均开放时间;Hecker等[7]及Oltman等[26]的工作都证明,细胞外高K+和KCa 阻滞剂均能明显削弱EETs的舒张反应;Hu等[10]的研究直接表明4种EETs均可促进不同的血管平滑肌细胞膜KCa开放及超极化;Hayabuohi[27]等采用膜片钳技术也证实EDHF开通冠脉血管平滑肌细胞膜KCa,并引起超极化。
, 百拇医药
鉴于EETs的上述特点,不少学者提出,EETs是一类内皮衍生性超极化因子[6,7,10,25~30]。
三、问题与展望
作为EDHF,EETs在心血管疾病中起何作用尚未明了。有人指出,高血压、糖尿病[3]及高龄动物[5]血管内皮依赖性超极化舒血管机制减弱。人类上述疾病中有否血管内皮依赖性超极化舒血管机制受损?有何意义?作为EDHF的一种,EETs有何改变?外源给予EETs能否逆转这些改变?值得探讨。Imig等[28]近来报道激活蛋白激酶A(protein kinase A, PKA)是11,12-EET舒张血管的机制之一;Hayabuohi等[27]也指出KCa开放似乎有G蛋白参与。EETs对平滑肌的超极化舒血管作用是否有钾通道以外的其他细胞内信号传递机制参与,也值得探讨。除了内皮依赖性超极化舒血管作用外,EETs还具有促进细胞有丝分裂、抑制血小板聚集、调节细胞钙传递等多种功能[29,30],对心脏也有直接作用[31]。因此对EETs的深入研究,不但有助于对EDHF进一步了解,而且将为循环系统疾病的防治提供新的思路。
, http://www.100md.com
[参 考 文 献]
[1] Furchgott RF, Zawadzki JV. The obiligatory role of the endothelial cells in the relaxation of arterial smooth muscle by acetylcholine[J].Nature, 1980, 288:373~376.
[2] Chen G, Suzuki H, Weston AH. Acetylcholine releases endothelium-derived hyperpolarizing factor and EDRF from rat blood vessels[J]. Br J Pharmacol, 1988, 95:1165~1174.
[3] Cohen RA, Vanhoutte PW. Endothelium-derived hyperpolarization beyond nitric oxide and cylic GMP[J]. Circulation, 1995, 92:3337~3347.
, 百拇医药
[4] Chen G, Yamamoto Y, Miva K, et al . Membrane hyperpolarization by EDHF in smooth muscles of the guinea-pig coronary artery[J]. Folia Pharmacol Jpn, 1990, 96:42~44.
[5] Feletou M, Vanhoutte PW. Endothelium-derived hyperpolarization factor[J]. Clin Exp Pharmacol Physiol, 1996, 23(12):1082~1090.
[6] Campbell WB, Gebremedhin D, Pratt PF, et al. Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factor[J]. Circ Res, 1996, 78:415~423.
, 百拇医药
[7] Hecker M, Bara AT, Bauersachs J, et al. Characterization of endothelium- derived hyperpolarizing factor as a cytochrome P450-derived arachidonic acid metabolite in mammals[J]. J Physiol, 1994, 481(2):407~414.
[8] Nagao T, Vanhoutte PW. Endothelium-derived hyperpolarizing factor and endothelium-dependent relaxations[J]. Am J Respir Cell Mol Biol, 1993, 8(1):1~6.
[9] Illiano S, Mombouli JV, Nagao T, et al. Potentiation by trandolaprilat of the endothelium-dependent hyperpolarization induced by bradykinin[J]. J Cardiovasc Pharmacol, 1994,23suppl4:S6~S10.
, 百拇医药
[10]Hu S, Kim H. Activation of K+ channel in vascular smooth muscles by cytochrome P450 metabolites of arachidonic acid[J]. Eur J Pharmacol, 1993, 230:215~221.
[11]Dong H, Waldron GT, Galipeau D, et al. NO/PGI2-independent vasorelaxation and the cytochrome P450 pathway in rabbit carotid artery[J]. Br J Pharmacol, 1997, 120(4):695~701.
[12]Edwards G, Zygmunt PM, Hogestatt ED, et al. Effects of cytochrome P450 inhibitors on potassium currents and mechanical activity in rat portal vein[J]. Br J Pharmacol, 1996, 119(4):691~701.
, 百拇医药
[13]Parkington HC, Tare M, Tonta MA, et al. Stretch revealed three components in the hyperpolarization of guinea-pig coronary artery in response to acetylcholine[J]. J Physiol(Lond), 1993, 465:459~476.
[14]Chung SM, Ahn DS, Seok HS, et al. Effects of vanadate on vascular contractility and membrane potential in the rabbit aorta[J]. Yonsei Med J, 1992, 33(1):14~23.
[15]Feletou M, Vanhoutte PW. Endothelium-dependent hyperpolarization of canine coronary smooth muscle[J]. Br J Pharmacol, 1988, 93:515~524.
, 百拇医药
[16] Droogmans G, Callewaert G, Declerck I, et al. ATP- induced Ca2+ release and Cl- current in cultured smooth muscle cells from pig aorta[J]. J Physiol, 1991, 440:623~634.
[17] Zygmunt PM, Hogestatt ED. Role of potassium channels in endothelium- dependent hyperpolarization resistant to nitroarginine in the rat hepatic artery[J]. Br J Pharmacol, 1996, 117(7):1600~1604.
[18] Keef KD, Bowen SM. Effect of Ach on electrical and mechanical activity in guinea pig coronary arteries. Am J Physiol, 1989, 257:H1096~H1099.
, 百拇医药
[19] Rosolowsky M, Campbell WB. Role of PGI2 and epoxyeicosatrienoic acids in relaxation of bovine coronary arteries to arachidonic acid[J]. Am J Physiol, 1993,264:H327~H335.
[20] Fukao M, Hattori Y, Kanno M, et al. Evidence against a role of cytochrome P450-derived arachidonic acid metabolites in endothelium-depentent hyperpolarization by acetylcholine in rat isolated mesenteric artery[J]. Br J Pharmacol, 1997, 120:439~446.
, 百拇医药
[21] Proctor KG, Falck JR, Capdevila J, et al. Intestinal vasodilation by epoxyeicosatrienoic acids:Arachidonic acid metabolites produced by a cytochrome P450 monooxygenase[J]. Circ Res, 1987, 60:50~59.
[22] Adeagbo ASO. Varying extracellular k+:a functional approach to separating EDHF-and EDNO-related mechanisms in perfused rat mesenteric arterial bed. J Cardiovasc Pharmacol, 1993,21:423~429.
[23] Carroll MA, Schwartzman M, Capdevila J, et al. Vasoactivity of arachidonic acid epoxides[J]. Eur J Pharmacol, 1987,138:281~283.
, 百拇医药
[24] Gebremedhin D, Ma YH, Falck JR, et al. Mechanism of action of cerebral epoxyeicosatrienoic acids on cerebral arterial smooth muscle[J]. Am J Physiol,1992, 263:H519~H525.
[25] Fulton D , Mcgiff JC , Quilley J . Pharmacological evaluation of an epoxide as the hyperpolarizing factor mediating the nitric oxide independent vasodilator effect of bradykinin in the rat heart[J]. J Pharmacol Exp Ther, 1998, 287:497~503.
[26] Oltman CL ,Weintraub NL, VanRollins M ,et al . Epoxyeicosatrienoic acids and dihydroxyeicosatrienoic acids are potent vasodilators in the canine coronary microcirculation[J]. Circ Res, 1998, 83:932~939.
, http://www.100md.com
[27] Hayabuohi Y, Nakaya Y , Matsuoka S, et al . Endothelium-derived hyperpolarizing factor activates Ca2+ activated K+ channle in porcine coronary artery smooth muscle cells[J]. J Cardiovasc Pharmacol, 1998, 32:642~649.
[28] Imig JD, Insoho EW, Deivhmann PC, et al . Afferent arteriolar vasodilation to the sulfonimide analog of 11,12- epoxyeicosatrienoic acid involves protein kinase A[J]. Hypertension, 1999, 33:408~413.
, 百拇医药
[29]Medhora M, Harder D. Function role of epoxyeicosatrienoic acids and their production in astrocytes: approaches for gene transfer and therapy[J]. Int J Mol Med, 1998, 2:661~669.
[30] Hoebel BG, Steyrer E, Graier WF. Origin and function of epoxyeicosatrienoic acids in vascular endothelial cells: more than just endothelium-derived hyperpolarizing factor[J]? Clin Exp Pharmacol Physiol, 1998, 25:826~830.
[31] Chen J, Capdevila JH, Zeldin DC, et al. Inhibition of cardiac L-type calcium channels by epoxyeicosatrienoic acids[J]. Mol Pharmacol, 1999, 55(2):288~295.
[收稿日期] 1998-11-10 [修回日期] 1999-09-03
, http://www.100md.com
单位:(首都医科大学病理生理教研室,北京100054)
关键词:内皮细胞舒血管因子;肌,平滑,血管
中国病理生理杂志000227 [中图分类号] 331.3+6 [文献标识码] A
[文章编号] 1000-4718(2000)02-0184-04
Epoxyeicosatrienoic acids:A kind of endothelium derived hyperpolarizing factor
ZHANG Li-ke,WANG Wen,DING Ding-wu
, http://www.100md.com (Department of Pathophysiology,Capital University of Medical Sciences,Beijing 100054, China)
【A Review】 The endothelium derived hyperpolarizing factor (EDHF) has been paied attention to since the late 1980s. But it is not clear which are EDHF. The article reviewed the EDHF works and epoxyeicosatrienoic acids (EETs),an important kind of EDHF.
[MeSH] Endothelium-derived relating factor; Muscle, smooth, vascular
, 百拇医药
自从1980年Furchgott等[1]发现内皮细胞释放内皮衍生性舒张因子(endothelium derived relaxing factor,EDRF )以来,血管内皮细胞在调节血管舒缩方面的作用引起极大关注。随着对EDRF研究的深入,发现在内皮完整的离体血管上,抑制一氧化氮(nitric oxide ,NO)和 前列环素(prostaglandin , PGI2)合成之后,乙酰胆碱等物质所致血管舒张并未完全消除,这说明内皮细胞还可产生另外一类舒血管物质。Chen等[2]研究了乙酰胆碱所致离体平滑肌舒张机制,发现内皮细胞可释放一种未明物质,可以使平滑肌细胞膜超极化,这种内皮依赖性超极化物质,不同于NO和PGI2,称其为内皮衍生性超极化因子(endothelium derived hyperpolarizing factor, EDHF)。 鉴于NO和PGI2也可引起部分血管平滑肌超极化而扩张,Cohen等[3]曾将EDHF分为广义和狭义两种。NO和PGI2属于广义的EDHF,狭义的EDHF可能包括某些活性氧,例如H2O2,O2,花生四烯酸脂氧化酶产物及花生四烯酸细胞色素P450单氧化酶产物。但多数研究者认为EDHF是区别于NO和PGI2的第三类内皮衍生性舒张血管物质[4~6 ]。本文按照后一种观点将有关EDHF及近来被瞩目的一类EDHF,环氧-二十碳三烯酸(epoxyeicosatrienoic acids , EETs)[6,7]的工作进行综述。
, 百拇医药
一、EDHF的概述
EDHF自血管内皮细胞释放,作用在平滑肌细胞膜,主要通过开放钙敏感性钾通道(Ca2+-sensitive potassium channel,Kca)通道等机制使之超极化,导致血管舒张。
血管中EDHF主要由内皮细胞产生,弥散到其相邻的平滑肌细胞起作用[3~6 ]。多种激素或生物活性物质(如乙酰胆碱、mechacholine、缓激肽、P物质、组胺、ADP、内皮素、血管活性肠肽、降钙素基因相关肽等)作用于内皮细胞膜上相应的受体,激活磷脂酶C(phospholipase C, PLC),催化磷酸肌醇(phosphoinositide,PI)分解为三磷酸肌醇(IP3)和甘油二酯(DG)。IP3升高可促进细胞内储存Ca2+释放,使细胞内游离Ca2+增加[ 8]。而血管内切应力(sheer stress)改变也可作用于内皮细胞,通过G蛋白介导的Ca2+内流,使细胞内游离Ca2+增加[9]。内皮细胞内Ca2+增加既直接引起EDHF释放,又可使内皮细胞膜上Kca开放,随着K+外流增加,进一步促进Ca2+内流,通过正反馈机制增加内皮细胞释放EDHF。
, 百拇医药
EDHF使平滑肌细胞膜超极化并引起其舒张。Cohen等[3]、 Chen等[4]和Feletou等[5]发现,抑制NO及PGI2的生成后,乙酰胆碱可以引起一过性血管平滑肌超极化,以及一过性内皮依赖性血管舒张。EDHF开通钾通道造成血管平滑肌超极化已被公认,但涉及何种K+通道,是否还有其他通道参与,尚有争议。不少学者指出[7,10-13],Kca与超极化作用密切相关,KCa阻滞剂四乙胺(tetraethylammonium,TEA)对内皮依赖性超极化有很强的抑制作用。Cohen等[3]认为高电导型KCa(charybdotoxin是其特异性阻滞剂)的开放参与超极化;Hecker等[7]的实验结果却表明主要是低电导型KCa(apamin是其特异性阻滞剂)参与,高电导型KCa的作用极小。也有报导ATP-敏感性钾通道(ATP-sensitive potassium channel,KATP)也参与了平滑肌超极化[13,14]。但Feletou等[5]的结果表明,NO引起的血管平滑肌超极化才通过KATP开放,而EDHF引起的超极化主要由Kca开通所致。曾有报道,Na+-K+ATP酶激活[15]和CI—通道灭活[16]机制参与EDHF引起冠脉和主动脉的超极化。但是Zygmunt等[17]的工作表明,上述两种通道均未参与EDHF致肝动脉平滑肌的超极化作用。平滑肌细胞超极化后如何引起其舒张,一种观点认为,平滑肌细胞超极化可抑制电压依赖性Ca2+通道的开放,使胞浆内Ca2+减少而引起舒张[3,8,14,]。另一种观点认为,K+通道激活剂所致细胞超极化后,可使平滑肌膜PLC抑制。当IP3生成减少使细胞内Ca2+动员减少;而DG生成减少使蛋白激酶C介导的Ca2+敏感性下降,这均可引起平滑肌舒张。K+通道激活剂chromakalin可单纯通过开放K+通道使平滑肌细胞超极化而舒张,与Ca2+通道抑制无关,即是其佐证[3]。
, 百拇医药
EDHF在多方面不同于NO和PGI2。乙酰胆碱引起EDHF释放通过激活内皮细胞M1受体,而引起NO释放则通过激活内皮细胞M2受体[18];NO舒张血管通过释放cGMP而实现,而EDHF舒张血管则无cGMP释放,主要与钾通道开放有关[3];一氧化氮合成酶和脂氧和酶抑制剂均对EDHF的功能无影响,但哇巴因(ouabain)、TEA等钾通道抑制剂及细胞外钾浓度增高可以抑制、而钾通道开放剂可以模拟EDHF的作用[2,4]。
总之,EDHF是不同于NO和PGI2的第三类内皮衍生性舒张血管物质。
二、 EETs对血管的作用
EETs是花生四烯酸的细胞色素P450 单氧化酶代谢产物,分为4种类型:5,6-EET、8,9-EET、11,12-EET和14,15-EET。其可受mechacholine、乙酰胆碱、缓激肽等物质激发由血管内皮细胞产生;开放血管平滑肌细胞膜KCa 通道,使平滑肌细胞膜超极化而舒张;其舒张血管作用能被KCa通道阻滞剂和细胞外高K+所阻断。这完全符合EDHF的特征。
, 百拇医药
实验证实,花生四烯酸细胞色素P450 代谢与内皮依赖性血管舒张有关。Rosolowsky等[19]发现花生四烯酸可导致牛冠状动脉环舒张,环氧化酶抑制剂消炎痛可将花生四烯酸所致扩冠作用削减50%;当向冠脉环孵育液中加入SKF525A(一种细胞色素P450抑制剂)后,扩冠作用同样被削减50%;而当同时加入消炎痛和SKF525A后,花生四烯酸的舒血管作用几乎完全被抑制。表明花生四烯酸经细胞色素P450和环氧化酶代谢后的产物,才是引起血管舒张的物质。Fukao等[20] 报导抑制NO及PGI2生成后,乙酰胆碱可引起鼠肠系膜动脉内皮依赖性超极化,表明存在EDHF;而SKF525A可以完全消除上述作用,也表明EDHF是细胞色素P450代谢产物。Campbell等的研究结果与之相似[6]。他们发现,mechacholine也可刺激冠脉内皮细胞释放一种扩血管物质,细胞色素P450抑制剂SKF525A、miconazole可抑制此反应。经HPLC和GC/MS技术鉴定,证明此扩血管物质为EETs。
, 百拇医药
一些工作证实了EETs对血管平滑肌有直接作用。Proctor等[21] 通过电视显微镜观察EETs对大鼠小肠微循环的影响,发现4种EETs均有浓度依赖性扩张微动脉、提高微循环血流量作用,强度依次为5,6- EET,8,9-EET,11,12-EET,14,15-EET。Feletou等[5]和Adeagbo等[22]分别对兔后肢和大鼠肠系膜血管床的研究结果也得出相同结论。在离体血管上的研究也是如此。Carroll等[23]在大鼠中央尾动脉孵育液中加入一定浓度的5,6-EET,发现5,6-EET可产生剂量依赖性扩血管作用,可明显降低血管阻力,调节局部血管紧张度。Gebremedhin等[24]的研究则表明,5,6-;8,9-和11,12-EET均可对猫大脑中动脉环产生浓度依赖性的舒张反应,其中8,9-和11,12-EET的作用强于同浓度的5,6-EET。Fukao等[20]也发现11,12-EET使离体肠系膜动脉舒张。Folton等[25]、Oltman等[26]、Hayabuohi等[27]等均发现4种EETs引起冠状动脉内皮依赖性超极化和舒张。Hecker等[7]和Oltman等[26]的工作还证实,给剥去内皮的冠状动脉以EETs仍然引起舒血管反应,表明EETs直接作用在平滑肌细胞上。总之EETs是一类很强的血管舒张剂,可直接舒张包括冠脉在内的大多数血管平滑肌。
, http://www.100md.com
EETs舒张血管的机制涉及血管平滑肌细胞膜KCa开放及超极化。Campbell等[6] 报道,mechacholine可以刺激冠脉内皮细胞释放EETs;KCa 阻滞剂TEA、charybdotoxin和细胞外高K+都可阻断被释放的4种EETs的扩冠作用;而KATP阻滞剂glibenclamide不影响EETs的作用;应用膜片钳技术研究平滑肌细胞膜电位的变化,发现mechacholine可使细胞膜超极化;细胞色素P450抑制剂SKF525A、miconazole则可抑制此超极化反应;表明EETs通过开放KCa而造成平滑肌细胞膜超极化。与Campbell等的结果相似,Gebremedhin等[24]发现,8,9-和11,12-EET均能提高K+通道的开放频率及平均开放时间;Hecker等[7]及Oltman等[26]的工作都证明,细胞外高K+和KCa 阻滞剂均能明显削弱EETs的舒张反应;Hu等[10]的研究直接表明4种EETs均可促进不同的血管平滑肌细胞膜KCa开放及超极化;Hayabuohi[27]等采用膜片钳技术也证实EDHF开通冠脉血管平滑肌细胞膜KCa,并引起超极化。
, 百拇医药
鉴于EETs的上述特点,不少学者提出,EETs是一类内皮衍生性超极化因子[6,7,10,25~30]。
三、问题与展望
作为EDHF,EETs在心血管疾病中起何作用尚未明了。有人指出,高血压、糖尿病[3]及高龄动物[5]血管内皮依赖性超极化舒血管机制减弱。人类上述疾病中有否血管内皮依赖性超极化舒血管机制受损?有何意义?作为EDHF的一种,EETs有何改变?外源给予EETs能否逆转这些改变?值得探讨。Imig等[28]近来报道激活蛋白激酶A(protein kinase A, PKA)是11,12-EET舒张血管的机制之一;Hayabuohi等[27]也指出KCa开放似乎有G蛋白参与。EETs对平滑肌的超极化舒血管作用是否有钾通道以外的其他细胞内信号传递机制参与,也值得探讨。除了内皮依赖性超极化舒血管作用外,EETs还具有促进细胞有丝分裂、抑制血小板聚集、调节细胞钙传递等多种功能[29,30],对心脏也有直接作用[31]。因此对EETs的深入研究,不但有助于对EDHF进一步了解,而且将为循环系统疾病的防治提供新的思路。
, http://www.100md.com
[参 考 文 献]
[1] Furchgott RF, Zawadzki JV. The obiligatory role of the endothelial cells in the relaxation of arterial smooth muscle by acetylcholine[J].Nature, 1980, 288:373~376.
[2] Chen G, Suzuki H, Weston AH. Acetylcholine releases endothelium-derived hyperpolarizing factor and EDRF from rat blood vessels[J]. Br J Pharmacol, 1988, 95:1165~1174.
[3] Cohen RA, Vanhoutte PW. Endothelium-derived hyperpolarization beyond nitric oxide and cylic GMP[J]. Circulation, 1995, 92:3337~3347.
, 百拇医药
[4] Chen G, Yamamoto Y, Miva K, et al . Membrane hyperpolarization by EDHF in smooth muscles of the guinea-pig coronary artery[J]. Folia Pharmacol Jpn, 1990, 96:42~44.
[5] Feletou M, Vanhoutte PW. Endothelium-derived hyperpolarization factor[J]. Clin Exp Pharmacol Physiol, 1996, 23(12):1082~1090.
[6] Campbell WB, Gebremedhin D, Pratt PF, et al. Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factor[J]. Circ Res, 1996, 78:415~423.
, 百拇医药
[7] Hecker M, Bara AT, Bauersachs J, et al. Characterization of endothelium- derived hyperpolarizing factor as a cytochrome P450-derived arachidonic acid metabolite in mammals[J]. J Physiol, 1994, 481(2):407~414.
[8] Nagao T, Vanhoutte PW. Endothelium-derived hyperpolarizing factor and endothelium-dependent relaxations[J]. Am J Respir Cell Mol Biol, 1993, 8(1):1~6.
[9] Illiano S, Mombouli JV, Nagao T, et al. Potentiation by trandolaprilat of the endothelium-dependent hyperpolarization induced by bradykinin[J]. J Cardiovasc Pharmacol, 1994,23suppl4:S6~S10.
, 百拇医药
[10]Hu S, Kim H. Activation of K+ channel in vascular smooth muscles by cytochrome P450 metabolites of arachidonic acid[J]. Eur J Pharmacol, 1993, 230:215~221.
[11]Dong H, Waldron GT, Galipeau D, et al. NO/PGI2-independent vasorelaxation and the cytochrome P450 pathway in rabbit carotid artery[J]. Br J Pharmacol, 1997, 120(4):695~701.
[12]Edwards G, Zygmunt PM, Hogestatt ED, et al. Effects of cytochrome P450 inhibitors on potassium currents and mechanical activity in rat portal vein[J]. Br J Pharmacol, 1996, 119(4):691~701.
, 百拇医药
[13]Parkington HC, Tare M, Tonta MA, et al. Stretch revealed three components in the hyperpolarization of guinea-pig coronary artery in response to acetylcholine[J]. J Physiol(Lond), 1993, 465:459~476.
[14]Chung SM, Ahn DS, Seok HS, et al. Effects of vanadate on vascular contractility and membrane potential in the rabbit aorta[J]. Yonsei Med J, 1992, 33(1):14~23.
[15]Feletou M, Vanhoutte PW. Endothelium-dependent hyperpolarization of canine coronary smooth muscle[J]. Br J Pharmacol, 1988, 93:515~524.
, 百拇医药
[16] Droogmans G, Callewaert G, Declerck I, et al. ATP- induced Ca2+ release and Cl- current in cultured smooth muscle cells from pig aorta[J]. J Physiol, 1991, 440:623~634.
[17] Zygmunt PM, Hogestatt ED. Role of potassium channels in endothelium- dependent hyperpolarization resistant to nitroarginine in the rat hepatic artery[J]. Br J Pharmacol, 1996, 117(7):1600~1604.
[18] Keef KD, Bowen SM. Effect of Ach on electrical and mechanical activity in guinea pig coronary arteries. Am J Physiol, 1989, 257:H1096~H1099.
, 百拇医药
[19] Rosolowsky M, Campbell WB. Role of PGI2 and epoxyeicosatrienoic acids in relaxation of bovine coronary arteries to arachidonic acid[J]. Am J Physiol, 1993,264:H327~H335.
[20] Fukao M, Hattori Y, Kanno M, et al. Evidence against a role of cytochrome P450-derived arachidonic acid metabolites in endothelium-depentent hyperpolarization by acetylcholine in rat isolated mesenteric artery[J]. Br J Pharmacol, 1997, 120:439~446.
, 百拇医药
[21] Proctor KG, Falck JR, Capdevila J, et al. Intestinal vasodilation by epoxyeicosatrienoic acids:Arachidonic acid metabolites produced by a cytochrome P450 monooxygenase[J]. Circ Res, 1987, 60:50~59.
[22] Adeagbo ASO. Varying extracellular k+:a functional approach to separating EDHF-and EDNO-related mechanisms in perfused rat mesenteric arterial bed. J Cardiovasc Pharmacol, 1993,21:423~429.
[23] Carroll MA, Schwartzman M, Capdevila J, et al. Vasoactivity of arachidonic acid epoxides[J]. Eur J Pharmacol, 1987,138:281~283.
, 百拇医药
[24] Gebremedhin D, Ma YH, Falck JR, et al. Mechanism of action of cerebral epoxyeicosatrienoic acids on cerebral arterial smooth muscle[J]. Am J Physiol,1992, 263:H519~H525.
[25] Fulton D , Mcgiff JC , Quilley J . Pharmacological evaluation of an epoxide as the hyperpolarizing factor mediating the nitric oxide independent vasodilator effect of bradykinin in the rat heart[J]. J Pharmacol Exp Ther, 1998, 287:497~503.
[26] Oltman CL ,Weintraub NL, VanRollins M ,et al . Epoxyeicosatrienoic acids and dihydroxyeicosatrienoic acids are potent vasodilators in the canine coronary microcirculation[J]. Circ Res, 1998, 83:932~939.
, http://www.100md.com
[27] Hayabuohi Y, Nakaya Y , Matsuoka S, et al . Endothelium-derived hyperpolarizing factor activates Ca2+ activated K+ channle in porcine coronary artery smooth muscle cells[J]. J Cardiovasc Pharmacol, 1998, 32:642~649.
[28] Imig JD, Insoho EW, Deivhmann PC, et al . Afferent arteriolar vasodilation to the sulfonimide analog of 11,12- epoxyeicosatrienoic acid involves protein kinase A[J]. Hypertension, 1999, 33:408~413.
, 百拇医药
[29]Medhora M, Harder D. Function role of epoxyeicosatrienoic acids and their production in astrocytes: approaches for gene transfer and therapy[J]. Int J Mol Med, 1998, 2:661~669.
[30] Hoebel BG, Steyrer E, Graier WF. Origin and function of epoxyeicosatrienoic acids in vascular endothelial cells: more than just endothelium-derived hyperpolarizing factor[J]? Clin Exp Pharmacol Physiol, 1998, 25:826~830.
[31] Chen J, Capdevila JH, Zeldin DC, et al. Inhibition of cardiac L-type calcium channels by epoxyeicosatrienoic acids[J]. Mol Pharmacol, 1999, 55(2):288~295.
[收稿日期] 1998-11-10 [修回日期] 1999-09-03
, http://www.100md.com