人参皂苷生物合成基因组织表达特性的研究(1)
[摘要] 采用生物信息学及实时荧光定量方法对10个人参皂苷生物合成关键酶基因的组织表达特性进行研究。运用转录组热图聚类方法分析了四年生吉林人参14个不同部位人参皂苷生物合成基因的表达;运用实时荧光定量PCR的方法测定人参组培苗、不定根中人参皂苷生物合成基因的表达;运用Pearson相关对这10个人参皂苷生物合成关键酶基因表达特性进行分析。结果表明,β-AS,CYP716A52v2在吉林人参及组培苗的根中表达高,与Ro分布相一致;与达玛烷型人参皂苷合成相关的CYP716A47,CYP716A53v2表达呈显著正相关,从分子水平证明了人参皂苷化学成分分布的差异主要由转运引起。
[关键词] 人參;人参皂苷生物合成基因;组织表达
[Abstract] The study is aimed to characterize the tissue expression of 10 key ginsenoside biosynthetic genes using bioinformatics method and real-time quantitative PCR. Heatmap and cluster analysis of 10 ginsenoside biosynthetic genes were performed in four-year-old Jilin ginseng. Using real-time quantitative PCR, the expression correlation of 10 key genes involved in ginsenoside biosynthesis was analyzed in different organs of four-year-old Jilin ginseng including, tissue culture seedling and adventitious root. Pearson correlation was used to analyze the relation between those 10 key genes involved in ginsenoside biosynthesis. The results showed that β-AS and CYP716A52v2 were expressed highly in root of Jilin ginseng and ginseng culture seedling, which was consistent with Ro distribution. In addition, CYP716A53v2 and CYP716A47 which involved in dammarane type ginsenoside biosynthesis were positively correlated, which revealed that the difference of ginsenoside distribution was caused by transport system.
, http://www.100md.com
[Key words] ginseng;ginsenoside biosynthetic genes;tissue expression
人参为五加科Araliaceae植物人参Panax ginseng C. A. Mey.的干燥根及根茎,是名贵中药材,在我国已有超过2 000年的用药历史[1]。现代药理学研究表明,人参的主要有效成分人参皂苷具有抗肿瘤、抗衰老、抗炎、抗氧化等药理活性[2-4]。人参皂苷属于三萜类成分,至今已从人参中分离并确定了110余种[5],根据苷元不同,可分为3种类型:一类为齐墩果烷型五环三萜类皂苷(如Ro等);另2类属于达玛烷型四环三萜类皂苷,包括人参二醇型皂苷(如Rb1,Rb2,Rc,Rd,F2,Rg3,Rh2等)和人参三醇型皂苷(如Re,Rg1,Rg2,Rf,Rh等),后两者在人参皂苷中占大多数,具有较好的新药开发前景[6]。
, 百拇医药
人参皂苷在人参中含量较低,而人参人工种植需要4~15年的生长栽培周期,又面临农药残留、重金属污染及品质退化等问题[7]。因此,为了适应日益增长的用药需求、保护人参资源,近年来国内外学者通过组织培养、生物转化及合成生物学等途径对人参皂苷合成进行探索研究[8]。人参已在中国、日本及韩国成功建立了组培苗、不定根及悬浮细胞等体系,但存在细胞株系不稳定、放大培养困难、目的产物低及培养条件复杂导致成本高等问题[7]。因此,如何有效地分析人参皂苷在不同体系中的合成规律,有助于解析以上问题。
近年来,关于人参皂苷生物合成途径的解析取得一定进展(图1)[8-11]。其中的关键酶包括上游的3-羟基-3-甲基戊二酰CoA还原酶(3-hydroxy-3-methylglutaryl-CoA reductase,HMGR)、法呢基焦磷酸合酶(farnesyl diphosphate synthase,FPS)、鲨烯合酶(squalene synthase,SQS)、鲨烯环氧酶(squalene epoxidase,SQE),下游的3个分支酶达玛烯二醇-Ⅱ合酶(darmmarenediol-Ⅱ synthase,DDS)、β-香树素合酶(β-amyrin synthase,β-AS)、环阿尔廷醇合酶(cycloartenol synthase,CAS)和3个细胞色素P450酶CYP716A47(形成人参二醇型皂苷前体原人参二醇),CYP716A53v2(形成人参三醇型皂苷前体原人参三醇),CYP716A52v2(oleanolic acid synthase,OAS,形成齐墩果烷型皂苷前体齐墩果酸)。本研究通过人参植株、组培苗及不定根体系,对以上10个关键酶基因进行组织表达特性分析,并探讨了基因表达的相关性,为深入阐明人参皂苷合成途径提供理论依据,为有效筛选皂苷转产型组培材料提供指标基础。, http://www.100md.com(刘娟 纪瑞锋 陈同 袁媛 郭娟 王英平 高文远 黄璐琦)
[关键词] 人參;人参皂苷生物合成基因;组织表达
[Abstract] The study is aimed to characterize the tissue expression of 10 key ginsenoside biosynthetic genes using bioinformatics method and real-time quantitative PCR. Heatmap and cluster analysis of 10 ginsenoside biosynthetic genes were performed in four-year-old Jilin ginseng. Using real-time quantitative PCR, the expression correlation of 10 key genes involved in ginsenoside biosynthesis was analyzed in different organs of four-year-old Jilin ginseng including, tissue culture seedling and adventitious root. Pearson correlation was used to analyze the relation between those 10 key genes involved in ginsenoside biosynthesis. The results showed that β-AS and CYP716A52v2 were expressed highly in root of Jilin ginseng and ginseng culture seedling, which was consistent with Ro distribution. In addition, CYP716A53v2 and CYP716A47 which involved in dammarane type ginsenoside biosynthesis were positively correlated, which revealed that the difference of ginsenoside distribution was caused by transport system.
, http://www.100md.com
[Key words] ginseng;ginsenoside biosynthetic genes;tissue expression
人参为五加科Araliaceae植物人参Panax ginseng C. A. Mey.的干燥根及根茎,是名贵中药材,在我国已有超过2 000年的用药历史[1]。现代药理学研究表明,人参的主要有效成分人参皂苷具有抗肿瘤、抗衰老、抗炎、抗氧化等药理活性[2-4]。人参皂苷属于三萜类成分,至今已从人参中分离并确定了110余种[5],根据苷元不同,可分为3种类型:一类为齐墩果烷型五环三萜类皂苷(如Ro等);另2类属于达玛烷型四环三萜类皂苷,包括人参二醇型皂苷(如Rb1,Rb2,Rc,Rd,F2,Rg3,Rh2等)和人参三醇型皂苷(如Re,Rg1,Rg2,Rf,Rh等),后两者在人参皂苷中占大多数,具有较好的新药开发前景[6]。
, 百拇医药
人参皂苷在人参中含量较低,而人参人工种植需要4~15年的生长栽培周期,又面临农药残留、重金属污染及品质退化等问题[7]。因此,为了适应日益增长的用药需求、保护人参资源,近年来国内外学者通过组织培养、生物转化及合成生物学等途径对人参皂苷合成进行探索研究[8]。人参已在中国、日本及韩国成功建立了组培苗、不定根及悬浮细胞等体系,但存在细胞株系不稳定、放大培养困难、目的产物低及培养条件复杂导致成本高等问题[7]。因此,如何有效地分析人参皂苷在不同体系中的合成规律,有助于解析以上问题。
近年来,关于人参皂苷生物合成途径的解析取得一定进展(图1)[8-11]。其中的关键酶包括上游的3-羟基-3-甲基戊二酰CoA还原酶(3-hydroxy-3-methylglutaryl-CoA reductase,HMGR)、法呢基焦磷酸合酶(farnesyl diphosphate synthase,FPS)、鲨烯合酶(squalene synthase,SQS)、鲨烯环氧酶(squalene epoxidase,SQE),下游的3个分支酶达玛烯二醇-Ⅱ合酶(darmmarenediol-Ⅱ synthase,DDS)、β-香树素合酶(β-amyrin synthase,β-AS)、环阿尔廷醇合酶(cycloartenol synthase,CAS)和3个细胞色素P450酶CYP716A47(形成人参二醇型皂苷前体原人参二醇),CYP716A53v2(形成人参三醇型皂苷前体原人参三醇),CYP716A52v2(oleanolic acid synthase,OAS,形成齐墩果烷型皂苷前体齐墩果酸)。本研究通过人参植株、组培苗及不定根体系,对以上10个关键酶基因进行组织表达特性分析,并探讨了基因表达的相关性,为深入阐明人参皂苷合成途径提供理论依据,为有效筛选皂苷转产型组培材料提供指标基础。, http://www.100md.com(刘娟 纪瑞锋 陈同 袁媛 郭娟 王英平 高文远 黄璐琦)