人工智能诊治癌症的进程(2)
但是,最早开发应用于医疗领域的人工智能的美国国际商业机器公司更是走在了前面。
沃森癌症医生
美国国际商业机器公司之前推出的人工智能软件——沃森医生诊治疾病是建立在对大数据的检索、使用和算法之上。沃森医生储存了数百万的文档资料,包括字典、百科全书、新闻、文学以及其他可以建立知识库的参考材料。沃森的硬件配置可以使它每秒处理500GB的数据,相当于1秒阅读100万本书。
沃森在面临一位就诊者的时候,会进行一系列的算法,包括语法语义分析、对各个知识库进行搜索、提取备选答案、对备选答案证据搜寻、对证据强度的计算和综合等。此外,沃森医生还可以通过询问病人的症状、病史,迅速给出诊断提示和治疗意见。通过这些程序进行诊断,沃森的诊断准确率达到73%。
现在经过多年的改进,研究人员把沃森医生的突破之一选择为对癌症的识别和诊断。最近,美国国际商业机器公司和美国著名的基因公司Illumina进行合作,在沃森医生的基础上,专门进行癌症基因组的标准化测序和解读,以诊断癌症。根据这个目标,美国国际商业机器公司研发了一个新的专门对基因组进行测序和分析的软件,即沃森基因组(相当于专门诊治肿瘤的专科医生),并将这个软件整合到Illumina公司的Base Space和肿瘤测序计划中,这就可以让沃森基因组使用Illumina公司的实体肿瘤分析面板TruSight Tumor 170。TruSight Tumor 170汇集了一套整合DNA与RNA的靶向癌症相关的基因突变,包括突变与微缺失、基因扩增、基因融合以及剪接变异,使得肿瘤谱分析从一系列单基因检测向多基因检测转变,为肿瘤基因组提供了更加全面的视图。教会机器识别这些肿瘤基因数据,可以快速辨识和诊断肿瘤。
新的智能软件融合后,沃森基因组可以在短短的几分钟之内读取TruSight Tumor 170生成的遗传信息文件,梳理专业指南、医学文献、临床试验汇编和其他知识来源。然后,系统将生成包含每个基因组改变的注释报告。使用沃森基因组可以大幅减少解释结果所花费的时间。比较起来,研究人员也可以使用TruSight Tumor 170进行癌症基因的检测,但是,速度很慢。沃森基因组在几分钟内做的事情,研究人员一般需要一个多星期才能做完。
不仅在速度上沃森基因组可以比人类快得多,而且在检测的准确性以及提供治疗癌症的方式上,沃森基因组与临床大夫和肿瘤专家提供的方案基本一致。美国北卡罗来纳大学教堂山分校的夏普尼斯博士研究了1000余名癌症患者的数据,发现在99%的病例中,沃森基因组提出的治疗建议与分子肿瘤专家团队提出的治疗建议相同。此外,美国国际商业机器公司旗下的沃森健康的副总裁哈韦还指出,在30%的肿瘤病例中,沃森基因组还发现癌症专家遗漏的一些细节。
基于这些结果,研究人员认为,教会人工智能诊治肿瘤大有可为。现在,美国20个专注于基因组学和肿瘤学领域的癌症研究所,包括纪念斯隆·凯特林癌症中心和北卡罗来纳大学教堂山分校的肿瘤研究机构正在进一步培训沃森基因组,以便让沃森基因组能更快和更好地诊治癌症。
对癌症图像的智能解读
诊断癌症不仅要靠解读癌症特有的基因、分子标记物等,还要认识和判断采用各种物理和化学方式拍摄的人体肿瘤的图像,这既是人工智能深度学习的内容,又是人工智能帮助人类诊治癌症的一个重要途径,在这个方面,人工智能也取得了一些进展。
2016年8月,美国休斯顿卫理公会医院的研究人员在《癌症》杂志上发表文章称,他们研发的一款人工智能软件在解析乳腺X线图片时比普通医生快30倍,诊断乳腺癌的准确率更是高达99%。这个癌症诊断软件可以直观地将X光图片的信息转译成诊断信息,方便医生快速对病人病情做出判断,避免耽误病情。
即便是肿瘤科的专科医生,对诸如X线片、CT和核磁共振成像图片的解读都不会是百分之百的准确,而且有很多误读。美国疾病预防控制中心(CDC)和癌症协会的数据显示,每年美国大约有1210万人接受乳腺X线图片检测,其中差不多有一半人在X線图片上会出现阳性结果,但实际上是假阳性。为此,又迫使大量女性为了求得安心而进一步接受乳腺活组织检查,进行这一检查的人每年有160万人左右,其中20%的女性根本就没病。这给许多女性和其家庭造成极大经济和精神负担。
为了改变这种状况,研究人员打算从人工智能着手来解决X线图片识别癌症的假阳性问题。卫理公会医院的研究人员设计的这个人工智能软件能够扫描病人的X线影像结果,能采集诊断特征,并将乳腺X线影像结果与乳腺癌亚型进行关联。此后,医生可使用软件的分析结果来精确预测每个病人是否有患乳腺癌的风险。
利用这个人工智能软件研究人员解读了500名乳腺癌病人的乳腺X线影像结果和病理组织切片报告,同时,研究人员还安排各种相关医学数据企图迷惑人工智能软件。另一方面,让两名肿瘤科的权威医生进行同样的看图诊断。人工智能用几个小时就完成诊断,但两位乳腺癌专业的权威医生却花了50~70小时才完成对50位病人的诊断。
这套软件能够快速和准确诊断乳腺癌的原因在于,它能在很短时间内回顾几百万份记录,通过解读病人的乳腺X线影像结果帮助医生诊断,效率更高。如此,也有望减少不必要的组织活检。组织活检不仅耗费钱财,而且准确率也不见得高。现在,乳腺癌组织活检结果的正确率只有60%~80%,但在美国乳腺癌活检设备的市场规模到2024年将达9.11亿美元。美国每年浪费在最简单的非侵入性乳腺癌上的资金也高达3500万美元。显然,人工智能软件可以帮助提高癌症的正确诊断率并降低诊疗费用。
【责任编辑】张田勘 (冬雪)
沃森癌症医生
美国国际商业机器公司之前推出的人工智能软件——沃森医生诊治疾病是建立在对大数据的检索、使用和算法之上。沃森医生储存了数百万的文档资料,包括字典、百科全书、新闻、文学以及其他可以建立知识库的参考材料。沃森的硬件配置可以使它每秒处理500GB的数据,相当于1秒阅读100万本书。
沃森在面临一位就诊者的时候,会进行一系列的算法,包括语法语义分析、对各个知识库进行搜索、提取备选答案、对备选答案证据搜寻、对证据强度的计算和综合等。此外,沃森医生还可以通过询问病人的症状、病史,迅速给出诊断提示和治疗意见。通过这些程序进行诊断,沃森的诊断准确率达到73%。
现在经过多年的改进,研究人员把沃森医生的突破之一选择为对癌症的识别和诊断。最近,美国国际商业机器公司和美国著名的基因公司Illumina进行合作,在沃森医生的基础上,专门进行癌症基因组的标准化测序和解读,以诊断癌症。根据这个目标,美国国际商业机器公司研发了一个新的专门对基因组进行测序和分析的软件,即沃森基因组(相当于专门诊治肿瘤的专科医生),并将这个软件整合到Illumina公司的Base Space和肿瘤测序计划中,这就可以让沃森基因组使用Illumina公司的实体肿瘤分析面板TruSight Tumor 170。TruSight Tumor 170汇集了一套整合DNA与RNA的靶向癌症相关的基因突变,包括突变与微缺失、基因扩增、基因融合以及剪接变异,使得肿瘤谱分析从一系列单基因检测向多基因检测转变,为肿瘤基因组提供了更加全面的视图。教会机器识别这些肿瘤基因数据,可以快速辨识和诊断肿瘤。
新的智能软件融合后,沃森基因组可以在短短的几分钟之内读取TruSight Tumor 170生成的遗传信息文件,梳理专业指南、医学文献、临床试验汇编和其他知识来源。然后,系统将生成包含每个基因组改变的注释报告。使用沃森基因组可以大幅减少解释结果所花费的时间。比较起来,研究人员也可以使用TruSight Tumor 170进行癌症基因的检测,但是,速度很慢。沃森基因组在几分钟内做的事情,研究人员一般需要一个多星期才能做完。
不仅在速度上沃森基因组可以比人类快得多,而且在检测的准确性以及提供治疗癌症的方式上,沃森基因组与临床大夫和肿瘤专家提供的方案基本一致。美国北卡罗来纳大学教堂山分校的夏普尼斯博士研究了1000余名癌症患者的数据,发现在99%的病例中,沃森基因组提出的治疗建议与分子肿瘤专家团队提出的治疗建议相同。此外,美国国际商业机器公司旗下的沃森健康的副总裁哈韦还指出,在30%的肿瘤病例中,沃森基因组还发现癌症专家遗漏的一些细节。
基于这些结果,研究人员认为,教会人工智能诊治肿瘤大有可为。现在,美国20个专注于基因组学和肿瘤学领域的癌症研究所,包括纪念斯隆·凯特林癌症中心和北卡罗来纳大学教堂山分校的肿瘤研究机构正在进一步培训沃森基因组,以便让沃森基因组能更快和更好地诊治癌症。
对癌症图像的智能解读
诊断癌症不仅要靠解读癌症特有的基因、分子标记物等,还要认识和判断采用各种物理和化学方式拍摄的人体肿瘤的图像,这既是人工智能深度学习的内容,又是人工智能帮助人类诊治癌症的一个重要途径,在这个方面,人工智能也取得了一些进展。
2016年8月,美国休斯顿卫理公会医院的研究人员在《癌症》杂志上发表文章称,他们研发的一款人工智能软件在解析乳腺X线图片时比普通医生快30倍,诊断乳腺癌的准确率更是高达99%。这个癌症诊断软件可以直观地将X光图片的信息转译成诊断信息,方便医生快速对病人病情做出判断,避免耽误病情。
即便是肿瘤科的专科医生,对诸如X线片、CT和核磁共振成像图片的解读都不会是百分之百的准确,而且有很多误读。美国疾病预防控制中心(CDC)和癌症协会的数据显示,每年美国大约有1210万人接受乳腺X线图片检测,其中差不多有一半人在X線图片上会出现阳性结果,但实际上是假阳性。为此,又迫使大量女性为了求得安心而进一步接受乳腺活组织检查,进行这一检查的人每年有160万人左右,其中20%的女性根本就没病。这给许多女性和其家庭造成极大经济和精神负担。
为了改变这种状况,研究人员打算从人工智能着手来解决X线图片识别癌症的假阳性问题。卫理公会医院的研究人员设计的这个人工智能软件能够扫描病人的X线影像结果,能采集诊断特征,并将乳腺X线影像结果与乳腺癌亚型进行关联。此后,医生可使用软件的分析结果来精确预测每个病人是否有患乳腺癌的风险。
利用这个人工智能软件研究人员解读了500名乳腺癌病人的乳腺X线影像结果和病理组织切片报告,同时,研究人员还安排各种相关医学数据企图迷惑人工智能软件。另一方面,让两名肿瘤科的权威医生进行同样的看图诊断。人工智能用几个小时就完成诊断,但两位乳腺癌专业的权威医生却花了50~70小时才完成对50位病人的诊断。
这套软件能够快速和准确诊断乳腺癌的原因在于,它能在很短时间内回顾几百万份记录,通过解读病人的乳腺X线影像结果帮助医生诊断,效率更高。如此,也有望减少不必要的组织活检。组织活检不仅耗费钱财,而且准确率也不见得高。现在,乳腺癌组织活检结果的正确率只有60%~80%,但在美国乳腺癌活检设备的市场规模到2024年将达9.11亿美元。美国每年浪费在最简单的非侵入性乳腺癌上的资金也高达3500万美元。显然,人工智能软件可以帮助提高癌症的正确诊断率并降低诊疗费用。
【责任编辑】张田勘 (冬雪)