令人着迷的梅森素数(1)
2016年1月7日,美国数学家库珀发现第49个梅森素数274207281-1,即2的74207281次方减1。这个超大素数有22338618位,是目前已知的最大素数。如果用普通字号将它连续打印下来,它的长度可超过65千米!
梅森素数是一种特殊的素数,它是数论研究的一项重要内容,也是当今科学研究的热点与难点之一。所谓梅森数,是指形如2p-1的一类数,其中指数p是素数,常记为Mp 。如果梅森数是素数,就称为梅森素数。用因式分解法可以证明,若2n-1是素数,则指数n也是素数;反之,当n是素数时,2n-1却未必是素数。前几个较小的梅森数大都是素数,然而梅森数越大,梅森素数也就越难出现。
是否存在无穷多个梅森素数是数论中未解决的著名难题之一,300多年来,人类仅发现49个梅森素数,由于这种素数珍奇而迷人,因此被人们誉为 “数海明珠”。
梅森素数的神秘诞生
1588年9月8日,数学家梅森出生在法国奥泽的一个工人家庭,16岁时进入耶稣会办的学校学习,1609年从巴黎的索邦神学院毕业后任神职人员,1619年到拉农西亚德女修道院教授神学和哲学。
梅森有很高的科学素养,其研究涉及声学、光学、力学、航海学和数学等多个学科,并有“声学之父”的美誉。他是17世纪欧洲科学界一位独特的、极具魅力的人物,他学识广博、才华横溢,是当时法国许多科学家的密友。当时,大多数科学家喜欢以相互通信的方式交流科学思想,许多数学家都乐于将研究成果寄给梅森,然后凭借他热情诚挚的性格和丰富的社交圈,研究成果会在科学界广泛传播开来。梅森起到了科学交流的桥梁作用,被誉为“有定期数学杂志之前的数学的交换站”。由于梅森学识渊博、才华横溢、为人热情以及最早系统而深入地研究2p-1型的数,为了纪念他,1897年在瑞士苏黎世举行的首届国际数学家大会(ICM)就将2p-1型的数称为梅森数,并以Mp记之(其中M为梅森姓氏的首字母);如果Mp为素数,则称之为梅森素数。
在梅森研究2p-1型的素数之前,法国数学家费马曾与他进行过相关交流。1640年6月,费马在给梅森的一封信中写道:“在艰深的数论研究中,我发现了三个非常重要的性质。我自信它们将成为今后解决素数问题的基础。”这封信讨论了形式为2n-1的素数。2n-1最早出现在欧几里得《几何原本》(公元前300年左右)第九章命题6中。梅森以此作为基础,花4年时间研究、检验了直至2257-1的全部数,并于1644年在他的《物理数学随感》一书中写道:“总结前人的工作和我个人的研究,可以得到结论:在n小于或等于257的数中,仅当n=2、3、5、7、13、17、19时,2n-1是素数,并猜想n=31、67、127和257时,2n-1是素数;对于n<257的其他数值,2n-1都是合数。”
梅森提出的大胆猜想,可以大大缩短寻觅最大素数的验证范围。梅森素数的验证工作是十分艰辛与繁重的,n=31、67、127和257时的几个数比较庞大,其中最小的 231-1=2147483647也具有10位数字,是近20多亿的大数,正如梅森推测:“一个人,使用一般的验证方法,要检验一个15位或20位的数字是否为素数,即使终生的时间也是不够的!”是啊,枯燥、冗长、单调、刻板的运算会耗尽一个人的毕生精力,谁愿让生命的风帆永远在黑暗中颠簸?
虽然人们非常想知道梅森猜想的根据和方法,然而年迈力衰的梅森来不及留下猜想过程,便在1648年去世了。人们的希望与梅森的生命一起泯灭在流逝的时光之中。梅森曾于1644年猜想:“267-1是个素数。”当时,人们对其猜想深信不疑,连德国大数学家莱布尼兹和哥德巴赫都认为他是对的。也许是因为梅森的名气太大了,因此,没有人敢对其断言表示怀疑。
不过,1930年在美国数学协会的年会上,数学家科尔做了一次精彩的演讲,他提交的论文题目是“关于大数的因子分解”。在“演讲”过程中,他始终一言不发,只是默默地在黑板上进行计算。他先算出267-1的结果,再算出193707721×761838257287的结果,两个结果完全一样。科尔第一个否定了“267-1是个素数”这一自梅森猜想以来一直被人们相信的结论,其“演讲”赢得了全场听众起立热烈鼓掌和齐声喝彩。这个“一言不发的演讲”成了科学史上的佳话。会后,人们问科尔:“你花费多少时间来研究这个问题?”他静静地说:“三年的全部星期天。”后来,这一传奇的“演讲”使他当选为美国数学协会的会长。他去世后,该协会专门设立了“科尔奖”,用于奖励做出杰出贡献的数学家。
同时,科尔的这场无言的演讲,为人们探索梅森素数提供了有力的精神支持,解放了数学家的思想,并掀起了研究梅森素数的热潮。
梅森素数的搜索历程
在“笔算纸录”的年代,人们历尽艰辛,才找到12个梅森素数,而计算机的诞生加速了梅森素数的探究进程。1946年第一台计算机诞生了,寻觅梅森素数即最大素数的工作从手工变为计算机。1952年,数学家鲁滨逊等人将鲁卡斯-雷默方法编译成计算机程序,使用SWAC型计算机在几个月内,就找到了5个梅森素数:M521、M607、M1279、M2203、M2281。
探究梅森素數不仅极富挑战性,而且对探究者来说有一种巨大的自豪感。
1963年6月2日晚上8点,当第23个梅森素数211213-1通过大型计算机被找到时,美国广播公司(ABC)中断了正常的节目播放,在第一时间发布了这一重要消息,《芝加哥论坛报》还把这一消息作为头版头条来报道。发现这个素数的美国伊利诺伊大学数学系全体师生感到无比骄傲,为了让全世界都分享这一重大成果,以至把所有从系里发出的信封都盖上了“211213-1是个素数”的邮戳,这一做法一直延续到1976年该系数学家证明著名的“四色定理”为止。 (邵红能)