当前位置: 首页 > 期刊 > 《百科知识》 > 2017年第22期 > 正文
编号:13214099
冷冻电镜热起来(2)
http://www.100md.com 2017年11月15日 百科知识2017年第22期
     那么,对于生物大分子的结构研究,可不可以照搬这个思路呢?约阿希姆·弗兰克给出了肯定的答案。他在20世纪80年代提出并完善了电子显微镜单颗粒重构技术,不再需要让蛋白质形成二维的晶体。说起来,二维晶体只是薄薄一层,似乎比形成三维晶体容易了许多,但其实二维结晶的难度与三维结晶并无太大分别。而单颗粒重构技术,顾名思义只需要单个蛋白质颗粒即可,无需任何形式的结晶。

    具体来说,弗兰克首先要给散落在载网上的同一种蛋白质分子拍摄电子显微镜“照片”。拍照时,有的蛋白质可能是“正面”朝上,有的可能是“底面”朝上,也有可能是“左面”朝上,或者“右面”朝上。如果拍摄足够多的样品,有了足够多的照片之后,弗兰克就可以得到这种蛋白质在各个不同方向上的“照片”,就好像是全息的“逮捕照”一样。最后,通过数学计算的方法就能够重构这种蛋白质的三维结构模型。

    你或许会想到一个问题:蛋白质分子不只是表面有原子,里面也有原子,如果只能拍到表面的照片,如何知道里面的结构信息呢?其实,这里说的“照片”并不是真正的照片,因为它是在样品底下接收到的电子束透射之后形成的投影影像。这种投影也跟阳光下的纯黑影子不同,因为电子束是从蛋白质中穿透而过的,所以受到了蛋白质内部原子的影响,带有了内部的结构信息。正因为如此,最终重构出来的才是蛋白质完整的三维结构。

    冰的玻璃

    亨德森和弗兰克的贡献似乎已经足以解决用电子显微镜研究蛋白质结构的问题了,但还少了一项重要技术,也就是冷冻电镜技术中的“冷冻”二字,它来自于雅克·杜邦内特的贡献。

    我们都知道,生命离不开水。活细胞中每时每刻都发生着难以计数的生物化学反应,其中很多反应都有水分子的参与。而这还不是水对我们的唯一意义。如果我们能够缩小到原子水平的微观世界里直接观察,就会发现水溶液中的蛋白质表面牢牢地抓着几层水分子,甚至还有水分子紧密地结合到蛋白质的内部。这些水化层就是蛋白质表面的润滑剂,是蛋白质能够溶于水并发挥功能的关键所在。可以说,离开了水的蛋白质就不是蛋白质的真实模样了。

    科学家希望看到蛋白质的真实模样,所以核磁共振是在水溶液中测量的,X射线晶体学的晶体是在水溶液中形成的,其内部充满了水。然而电子显微镜却有一个先天的不利因素:为了减低电子束与空气分子的撞击带来的种种问题,电子显微镜内部必须是绝对的真空环境。而在真空环境中,液态的水立刻就会汽化。好在水还有一种固体状态,那就是冰。冰可以在低温下于真空中稳定存在。可是,冰也有冰的问题。虽然一块冰整体上不是一个有序的晶体,但它其实是由无数微小的有序晶体组成的。所以在电子束的照射下,冰也会产生衍射,扰乱生物大分子本身的成像。

    雅克·杜邦内特在20世纪80年代找到了解决这个问题的办法,那就是让水形成玻璃态的冰,也就是水分子仍然呈无序状态的冰。要做到这一点,就要让样品迅速降温,不给它结晶的时间。一般科学实验中用到低温环境时都会选择液氮,它化学上稳定,成本低,温度也足够低。但液氮却无法满足杜邦内特的要求,因为它的热容量太小,一接触常温的样品就被加热汽化了,在样品周围形成一个氮气的隔热层,阻止了进一步的快速降温。最终,杜邦内特选择了热容量足够大的液态乙烷,能够让样品瞬间降到接近零下200℃的温度,形成玻璃态的冰。这种方法一直延用至今,仍是用电子显微镜研究生物大分子结构时的最佳制样方法。

    向“埃”靠拢

    许多人或许会好奇:这3位科学家的贡献都已经是三四十年前的事情了,为什么诺贝尔奖委员会直到现在才颁奖给他们?事实上,虽然通过3位科学家的努力,冷冻电镜三维重构技术被用于蛋白质等生物大分子的结构研究,但是其分辨率一直比较低,徘徊在10埃以下,只有个别结构能够接近X射线晶体学的水平。而X射线晶体学的结构则能够轻松达到3埃以上的近原子分辨率水平。由于冷冻电镜结构的分辨率太低,无法精确定位原子坐标,无法提供结构细节,其应用就被大大限制了。

    这种境况一直到近两三年来才有明显的改观,而其来源仍是技术的进步。在众多电镜技术的改进之中,最为重要的或许就是华人科学家程亦凡等人开发成功的直接对电子束成像的元器件。这种成像方式抛弃了原来通过接收电子束轰击来显像的荧光屏,改由微电子元件直接感受电子流,就像用CCD感受光线一样,从而大大提高了成像的清晰度,而且使得即时成像成为可能。有了即时成像技术,科学家就可以拍摄一段电子显微成像的视频,再分解成一帧帧的静止画面,把这些画面重新校准叠合,就能够有效解决样品在拍摄过程中的漂移问题,相当于相机用上了数码防抖功能,从而进一步提高了图像的清晰度。在这一系列新技术的推动之下,冷冻电镜方法的分辨率终于开始向“埃”的水平靠拢。

    2013年,程亦凡等人应用新技术解析了人体感受温度的关键蛋白质——辣椒素受体的三维结构,向科学界展示了新型冷冻电镜技术在结构生物学研究中的美好前景。此后,越來越多的结构生物学家开始尝试使用冷冻电镜技术来研究蛋白质结构,并产出了一批高分辨率的重要结构成果。比如像剪切体这样的细胞器,因为过于巨大,在晶体学研究中被认为是不可能结晶的,而清华大学的施一公团队利用冷冻电镜技术已经成功解析了它的三维结构。在这种生物大分子组成的巨大“分子机器”的结构研究方面,冷冻电镜技术拥有着X射线晶体学和核磁共振技术都难以企及的巨大优势。

    如今,冷冻电镜三维重构是结构生物学界最为炙手可热的研究方向。程亦凡、施一公等人的工作虽然没有为他们自己带来诺贝尔奖,却间接促成诺贝尔奖花落电镜领域。可以想见,这次颁奖必然会进一步唤起科学界对于冷冻电镜技术的重视与热情。现在,大多数冷冻电镜结构的分辨率仍然在3埃左右,只有个别案例能够达到2埃左右,但随着更多新技术新方法的涌现,它必然会坚定地朝着1埃的原子分辨率水平迈进,成为与X射线晶体学同等重要的结构生物学方法。

    【责任编辑】庞 云 (谷第)
上一页1 2