当前位置: 首页 > 期刊 > 《百科知识》 > 2018年第10期 > 正文
编号:13227490
进无止境的计量单位(3)
http://www.100md.com 2018年5月15日 《百科知识》2018年第10期
进无止境的计量单位
进无止境的计量单位

     坎德拉:基准与时俱进

    人类对于世界的认识,大多是通过眼睛对光的感知而获得的。我们生活中除了阳光之外还有许许多多的光,比如可燃物的燃烧、电光源的发光以及生物的发光等。人类对于光的认识经历了极其漫长的过程,其中发光强度就是一个重要的方面。

    1881年,国际电工技术委员会确定烛光为国际标准,其定义为:1磅鲸油制成6支蜡烛,并以每小时120格令(1格令约为0.0648克)的速度燃烧时,在水平方向上的发光强度为1烛光。对于烛光的定义,标志着近代光度计量的开端,但是这样的标准稳定性很差,复现性也不好。

    1879年,法国科学家维奥列建议用处于凝固过程的1平方厘米纯铂表面的发光强度作为光度标准。1889年,国际电工技术委员会采用了维奥列的光度标准发光强度的1/20作为发光强度的单位,叫作“小数烛光”。

    1909年,英国、法国和美国的科学家共同用特制的电灯作为发光强度的基准。这就是1921年被国际照明委员会讨论通过的“国际烛光”。

    1937年,国际计量委员会和国际照明委员会决定,按照金属铂凝固点的黑体辐射来定义发光强度的单位,单位名称为“新烛光”,并定义全辐射体(即黑体)在铂凝固温度下的亮度为60烛光/平方厘米。

    1948年,第九届国际计量大会决定用坎德拉的名称取代新烛光,坎德拉的拉丁文意为“用兽油制作的蜡烛”。1967年,第13届国际计量大会又将坎德拉定义修改为:坎德拉是101325帕压力下,处于铂凝固点温度的黑体的1/600000平方米表面垂直方向上的发光强度。

    然而,在实验室利用黑体輻射基准对坎德拉进行复现时,其数据差异比较大。这说明上述基于黑体辐射基准定义的坎德拉存在某些问题。1979年,第16届国际计量大会决定对坎德拉重新进行定义,即坎德拉是一光源在给定方向上的发光强度,该光源发出频率为540×1012Hz的单色辐射,且在此方向上的辐射强度为1/683瓦特/球面度。定义中的540×1012Hz的单色辐射波长约为555nm,是人眼感觉最为灵敏的波长。该定义的优点是容易复现,并且能够较好地控制实验的准确度。

    安培:微观取代宏观

    安培是一位伟大的物理学家,被誉为“电学中的牛顿”。为了纪念安培在电学上的杰出贡献,电流的单位便以他的姓氏命名。虽然我们平时听到更多的是电压的单位伏特或者电阻的单位欧姆,但是它们都不是基本的物理量,它们的定义都是基于电流而得出的。

    1820年,安培提出了著名的安培定律。1908年,国际电学大会决定把1秒时间间隔内从硝酸银溶液中能电解出1.1180002毫克银的恒定电流确定为1安培,又称国际安培。

    1946年,国际计量大会把安培定义为:在真空中,截面积可忽略的两根相距1米的平行而无限长的圆直导线内,通以等量恒定电流,导线间相互作用力在1米长度上为2×10-7牛时,则每根导线中的电流为1安培,又称绝对安培。1948年,第九届国际计量大会批准了该定义并一直沿用至今。

    该定义采用的是宏观测量的方法,诸如“两根无限长、截面积可忽略的导线,在真空中相距1米平行放置”等条件,在实验室是无法重现的,因此会限制其测量精度。硅球法测量装置

    物理学家希望能通过一次产生一个电子的极为精确的电流源来重新定义安培,然而要检测到如此微小的电流无疑是十分困难的。芬兰与美国的一个研究小组已解决了这一难题,用于测量单个电子电量的单电子泵可以用来定义安培。在实验时,可在导电岛和隧道结间加上固定电压,在栅极加上振荡电压。借助栅极电压的振幅及平均值可精确测定每一振荡周期内穿隧通过的电子数。将测定的电子数乘以栅极电压的频率及电子电荷量(物理常数),就可以求得通过器件的电流了。并且,由于振荡电压的幅值及频率可精确测量,电子电荷量则是固定值,所以就能精确算出通过的电流了。

    摩尔:将与“硅球”挂钩

    摩尔作为国际单位制物质的量的基本单位,在化学上的应用是十分广泛的。摩尔的拉丁文意为“大量、堆积”,并不是科学家的名字。20世纪初,摩尔被定义为以克为单位的物质质量与分子量的比值。由于分子量的定义涉及到了碳-12,所以后来把摩尔的定义修改为直接基于碳-12,而不再引入分子量的概念。

    1971年,第14届国际计量大会决定在国际单位制(SI)中增加物质的量的基本单位摩尔,并定义1摩尔是所含基本微粒个数与0.012千克碳-12的原子数目相等的系统中的物质的量。

    每摩尔物质含有阿伏加德罗常数个微粒。在用摩尔计量物质的量时,我们只需关注物质的微观颗粒个数,而不需考虑微观颗粒的具体组成和性质。也就是说,摩尔可以是原子、分子、离子、电子及其他粒子,或是这些粒子的特定组合。

    摩尔可应用于计算微粒的数量、物质的质量、气体的体积、溶液的浓度以及反应过程的热量变化等。

    2018年的摩尔新定义将切断摩尔与千克的联系,而用阿伏加德罗常数来重新定义摩尔。这就要求实验测量的阿伏加德罗常数必须达到相对高的精确度,我国科学家在这方面进行了卓有成效的工作。中国计量科学研究院通过两种独立的方法,准确测量了X射线晶体密度摩尔质量方法(硅球法)中浓缩硅-28的摩尔质量,为基于阿伏加德罗常数的摩尔重新定义奠定了基础。两种方法在美、英、德、加、中、日、韩7个国家的8个实验室参与的国际比对中均获得最佳比对结果,浓缩硅摩尔质量测量的相对标准不确定度达到2×10–9(苏更林)
上一页1 2 3