Pim—1激酶小分子抑制剂的研究进展(3)
第1页 |
第4页 |
参见附件。
2.6 3-芳基-6氨基-三唑并[4,3-b]哒嗪类[15]
X光-单晶衍射显示化合物17(图5B)与Pim-1结合方式与化合物4结合的方式不同,在化合物17与Pim-1结合的复合物中m-CF3-苯环通过两部分氢键即芳香环C-5和C-6位上的质子与Glu121骨架羰基之间的氢键与铰链区的Glu121连接。
化合物17虽然是有效的Pim-1选择性抑制剂,但是其物理性质限制了其应用。以化合物17为先导化合物,R用哌啶基取代得到化合物18(图5B),其溶解度得到改善(pH 7.4时溶解度大于200 ?mol/L),而活性不变。
2.7 吡咯并[2,3-a]咔唑类
以吡咯并[2,3-a]咔唑为骨架的Pim抑制剂,C-6位被溴原子取代得到化合物19(图5C),对Pim-1有很好的抑制作用(IC50=6.8 nmol/L)。C-6位溴原子与Glu121骨架羰基之间的排斥力可能是化合物19与Pim-1的一个额外相互作用力[28]。对吡咯并[2,3-a]咔唑C-3位改造,可合成新的Pim激酶的选择性抑制剂(化合物20,21,22和23)。体外实验测试表明,这类化合物均具有纳摩尔浓度级的Pim激酶抑制活性。
2.8 喹啉类衍生物
Sliman等[29]报道了一系列7-羰基-8-羟基喹啉衍生物(图6A)对Pim-1具有抑制作用。其中化合物24活性最好(IC50=0.4 ?mol/L)。这些活性化合物是以8-羟基喹啉-7-碳酸为核心,分子对接实验表明杂环部分在Pim-1结合位点被精确放置,芳香环和Phe49苯环的疏水作用可以产生很高的抑制活性,辅助环通过氢键作用增强这种作用,而R1、R2、R3、R4四个取代基中最多同时含有一个羟基,另外三个取代基为氢时活性较好,如化合物25(IC50=0.5 ?mol/L)。
A47与咪唑并[1,2-b]哒嗪类化合物的作用方式一致,显著地损坏鼠科动物依赖Pim-1过表达的VaF3细胞转变成IL3细胞过程[30],这表明A47的抗癌活性部分是通过调节Pim-1活性实现。
2.9 苯并呋喃-2-羧酸类
这类化合物(图6B)的作用模式是:①苯并呋喃5-位取代基与ATP铰链区疏水口袋之间的疏水相互作用是非常重要的结合作用。②2-羧酸基团与Lys67的盐桥作用和Glu89与Asp186之间的氢键作用被认为是另一个非常重要的结合位点。③门看守位置(gate keeper site)附近的多余取代不适合。④在核糖结合区域存在潜在的空间以用于结构扩张。研究发现2-羧酸基团与末端氨基之间的氢键作用很重要。其代表者主要有化合物26和27[31]。
3 其他化合物
Anizon等[32]报道一系列的有机金属复合物(28~30)(图7)。这类化合物都含一个平面的杂环骨架,一个Ru的双齿配体,激酶抑制活性低于纳摩尔。吡啶咔唑和金属复合物部分占领与星孢菌素的吲哚咔唑和碳酸酯碎片相同的结合位点。化合物31~33(图7)是混合型Pim激酶抑制剂,对Pim-1和Pim-2均有抑制作用。
Tsuganezawa等[33]采用荧光关联能色谱法从700个化合物中虚拟筛选出的化合物34(图7),对Pim-1有抑制作用,体外IC50为150 nmol/L,单晶衍射分析化合物34与Pim-1的复合物结构,发现化合物34主要作用于ATP结合位点,并与残基Asp128和Glu171直接作用。Sarno等[34]发现ATP位点导向的蛋白激酶CK2抑制剂NBC(Ki=0.22 μmol/L),对Pim激酶也有抑制作用,尤其是对Pim-1和Pim-3,抑制活性与CK2相当。去硝基得到的dNBC对CK2的抑制活性几乎完全丧失(IC50大于30 μmol/L),而对Pim-1和Pim-3的抑制作用不变。
4 小结
Pim-1蛋白作为新的抗肿瘤靶点,具有较高的选择性,近年来越来越被关注。与Pim?-1相互作用的小分子抑制剂结构类型多样,暗示Pim-1抑制剂在肿瘤细胞中能钝化多个靶点。
咪唑并[1,2-b]哌嗪类与Pim-1激酶结合部位相对于ATP类似物抑制剂在利用激酶P-loop时相当特别。很明显还有很大空间优化这类配体小分子,以提高其Pim-1激酶抑制活性。SGI-1776作为唯一一个进入临床试验的小分子抑制剂,对Pim-1,Pim-2,Pim-3都具有较高的抑制作用,对慢性淋巴细胞白血病和前列腺癌细胞具有显著的细胞毒性效应 ......
您现在查看是摘要介绍页,详见PDF附件(5209kb)。