羊草分子生物学研究进展(2)
花粉培养、未授粉子房以及胚株培养等诱导形成单倍体植物,也可以通过植物愈伤组织培养中普遍存在的染色体变异实现植物突变育种,另外,通过植物组织培养技术进行的植物细胞融合(尤其是原生质体融合)、胚胎培养以及植物体外受精技术可获得远缘杂交种,通过植物组织培养中的茎尖培养能够产生无病毒原种,因而可用于植物脱毒,解决生产实践中植物病毒危害问题,组织培养是植物细胞工程学、遗传学、植物生理学、生物化学与分子生物学研究的重要基础,不仅用于快速繁殖。还用于单倍体育种、种质保存、生理学研究和基因转化等领域。
早在上世纪80年代,高天舜就利用羊草根茎作为外植体进行愈伤组织的诱导和植株再生材料,目的是为了改良羊草的遗传性状,试图通过组织培养途径获得羊草新类型,该研究采用当年生羊草根茎幼嫩部分的节间基部切段以及隔年生老根茎和当年生根茎的芍间中部、顶部切段作为外植体,消毒处理后接种于3种MS培养基中,先进行暗培养。待长出愈伤组织后转入光照培养,诱导率平均在20%左右,分化率最高也只有24.2%,羊草幼穗和成熟种子也可作为诱导愈伤组织的外植体,刘公社等,以幼穗作为外植体,恒温25℃条件下诱导愈伤组织,在加有1mg/L2,4-D MS培养基上继代2次后,转移到含1.0mg/L KT和0.5mg/NAA的MS培养基上分化培养得到再生芽,并在无激素的基本培养基上获得了生根的试管苗,移栽到温室后可正常生长,尽管从羊草叶片、幼穗和成熟胚在同样培养条件下均能诱导出愈伤组织,但只有幼穗愈伤组织能够继续分化出再生植株,但分化率因基因型和外源激素的不同而不同,以成熟羊草种子为外植体诱导愈伤组织具有操作简便、污染程度低、材料选择直观化的优点,且诱导率和幼苗分化率较高、幼苗健壮、生长势好,崔秋华等采用3种培养基(MS、B5和8114),3种2,4-D的浓度水平(1、2、4 mg/L)培养羊草幼嫩根茎和种子,结果表明,以种子作为外植体可获得较高的愈伤组织诱导率(29.05%),但目前对于最适激素浓度没有统一结论,其范围从1~4mg/L不等,对愈伤组织的诱导效果也未达到令人满意的水平,仍需要深入研究。
, http://www.100md.com
在对羊草愈伤组织的应用方面,可以以羊草种子诱导出的愈伤组织为材料,用含有NaCl的培养基和含有NaHCO3与Na2CO3的混合盐培养基进行培养,测定羊草愈伤组织的耐盐性,结果表明羊草愈伤组织对NaCl最大耐受强度为180mmol/L;对NaHC03与Na2CO3的混合盐的最大耐受强度为4mmol/L中性盐(NaCl)与碱性盐(NaHCO3与Na2CO3)对羊草愈伤组织的胁迫机制明显不同,国内外对于愈伤组织的培养大多应用于转基因,但在羊草方面进行的该项研究却很少,刘公社将携带PAT基因的质粒通过基因枪法转化羊草愈伤组织。然后在筛选培养基上进行培养,筛选抗性愈伤组织并转接到分化培养基上,得到再生苗,然后接种到含有筛选剂的生根培养基上培养后得到转基因羊草小苗,该研究已获得耐除草剂的羊草新品种专利,曲同宝等用基因枪将BADH基因转入由羊草成熟胚诱导出的胚性愈伤组织中,获得了转基因植株,经过PCR检测证明外源基因已整合到羊草基因组中并得以表达,虽然转入羊草的基因都可被检测到已整合人羊草基因组中,而且也得到表达,但是对于转基因羊草对周围生态环境的影响还未见相关报道,筛选突变体是羊草愈伤组织的另一用途,陈晖等用组织培养方法筛选获得羊草抗羟脯氨酸(HYP)变异系HR20-8,该变异系细胞内游离氨基酸和蛋白质组分氨基酸含量均发生了较大的变化,与供体对照比较,分别提高2.35倍和1.40倍,其中,游离脯氨酸和蛋白质组分脯氨酸分别提高6.6倍和3.0倍,且脯氨酸合成途径必需的r-谷氨酸激酶的活性提高了2.5倍。
, 百拇医药
3 羊草酶蛋白类研究
蛋白质是生物体生命中的第一重要物质,是生理功能的执行者,是生命现象的直接体现者,同时能够调控相关基因的表达,植物对抗非生物胁迫必然有蛋白质的参与,比如耐冷蛋白、热休克蛋白、水通道蛋白、赤霉素信号传导蛋白等,从羊草中检测这些蛋白的含量以及克隆表达该蛋白的基因对于研究羊草耐逆分子机理和改善羊草品质都具有重要意义。
目前对于羊草酶蛋白的研究还远远不够,主要有细胞色素氧化酶、过氧化物酶、脂酶同工酶等,其应用也仅局限于阐明羊草的遗传分化,通过聚类分析可以研究羊草种群在不同地理及生态环境中羊草在分子水平上细胞色素氧化酶同工酶存在着种内分化,羊草在同工酶水平上的分化受多个环境因子的综合影响,而且与羊草耐寒性能存在一定的内在联系,张丽萍等对采自同一天然草地上叶片呈黄绿色、灰绿色两种类型羊草的根、茎、叶的过氧化物同工酶、脂酶同工酶进行了分析比较,结果表明,两种叶色羊草,其相同组织的过氧化物同工酶谱及脂酶同工酶谱基本一致,两种羊草叶片呈现不同颜色只属不同生态型,磁场处理不仅可以促进羊草的生长。而且还能提高羊草的抗盐碱性,磁场使羊草过氧化物酶(POD)活性提高,并且诱发了一条新的同工酶带,张卫东等认为羊草自交不孕的原因是自交不亲和性障碍。并利用禾本科植物自交不亲和性有关的硫氧还蛋白(thsioredoxin)^基因设计的引物在羊草DNA中检测到预期片段,说明硫氧还蛋白h基因可能与羊草的自交不亲和性有关,该基因现已被克隆并能够从GenBank中查到其序列。
, 百拇医药
研究羊草草原土壤酶的活性可以判断土壤的肥力,土壤肥力水平接近则土壤酶的活性相似,土壤蛋白酶、脲酶、多酚氧化酶的活性与土壤有机碳、全氮呈显著相关关系,可以反映土壤肥力水平高低,是评价土壤退化的重要指标。
4 羊草耐逆基因的分离与克隆
羊草具有耐寒、耐旱、耐盐碱的特性,并且蛋白质含量较高,说明羊草在面对非生物胁迫时高效表达能够适应、缓解或对抗相应逆境条件的物质,尤其是调控这些物质表达的酶类基因,据报道,羊草种子个体萌发期最大忍受pH范围是9.14-9.53,对于NaCl可耐受的最大强度为600mmol/L,对于Na2C03可耐受的最大强度为175mmol/L,为了弄清这种适应机制的复杂性,通过大规模的cDNA克隆或者表达序列标签(EST)的测序分离相关基因是非常重要的,Jin等采集自然生长的植物叶组织经过Na2CO3胁迫处理构建了cDNA文库,并对其EST进行测序对比分析,推断在羊草叶和根中各有39和31个非生物胁迫相关基因,这些EST资源将有助于对植物耐盐碱分子基础的深入研究和理解。
, 百拇医药
甜菜碱是在生物体内起着渗透保护作用最主要的细胞相溶性物质,编码决定该物质合成的关键酶一甜菜碱醛脱氢酶(BADH)基因已经先后从多种生物体内得到克隆,并在多种植物中进行了遗传转化。已获得了抗盐、抗寒、耐旱能力得到较大程度提高的转基因植株,某些植物体内的甜菜碱含量和BADH活性随着土壤盐碱化程度的加重而增加,因此推测甜菜碱可能与羊草耐盐碱性有关,目前羊草中的部分BADH基因片段也已经被成功克隆。
5 问题与展望
分子生物学技术自其应用以来,以其不可逆转的渗透能力和交叉能力与各个学科齐头并进、相辅相成、共同发展,许多生物现象的机理机制都要最终依赖分子生物学手段予以阐明,以往对羊草生物学以及生理生态学进行了比较深入的探讨,但对于羊草分子生物学的研究起步较晚。进展也比较缓慢,近年来,随着分子生物学研究手段和技术的进步,以及羊草遗传改良的需要。人们在羊草遗传多样性、愈伤组织培养、酶蛋白分析以及基因克隆与转化等研究领域陆续开展了一些有益的尝试,并取得了许多重要研究成果,今后应在分子水平上,如对羊草自交不亲和性,非生物胁迫耐受机理,种子休眠机理,关键酶基因的分离克隆与转化,转基因羊草对周围环境的潜在影响等诸多方面加以深入探讨与研究,必将为羊草资源的保护和合理利用提供充分的理论基础。
作者简介:孔祥军(1980—),男[满],河北承德人,博士研究生,主要从事植物抗逆分子机理研究;梁正伟(1962—),男,吉林长春人,博士,研究员,博士生导师,通讯作者,主要从事植物逆境生理生态与分子生物学研究。, http://www.100md.com(孔祥军 梁正伟)
早在上世纪80年代,高天舜就利用羊草根茎作为外植体进行愈伤组织的诱导和植株再生材料,目的是为了改良羊草的遗传性状,试图通过组织培养途径获得羊草新类型,该研究采用当年生羊草根茎幼嫩部分的节间基部切段以及隔年生老根茎和当年生根茎的芍间中部、顶部切段作为外植体,消毒处理后接种于3种MS培养基中,先进行暗培养。待长出愈伤组织后转入光照培养,诱导率平均在20%左右,分化率最高也只有24.2%,羊草幼穗和成熟种子也可作为诱导愈伤组织的外植体,刘公社等,以幼穗作为外植体,恒温25℃条件下诱导愈伤组织,在加有1mg/L2,4-D MS培养基上继代2次后,转移到含1.0mg/L KT和0.5mg/NAA的MS培养基上分化培养得到再生芽,并在无激素的基本培养基上获得了生根的试管苗,移栽到温室后可正常生长,尽管从羊草叶片、幼穗和成熟胚在同样培养条件下均能诱导出愈伤组织,但只有幼穗愈伤组织能够继续分化出再生植株,但分化率因基因型和外源激素的不同而不同,以成熟羊草种子为外植体诱导愈伤组织具有操作简便、污染程度低、材料选择直观化的优点,且诱导率和幼苗分化率较高、幼苗健壮、生长势好,崔秋华等采用3种培养基(MS、B5和8114),3种2,4-D的浓度水平(1、2、4 mg/L)培养羊草幼嫩根茎和种子,结果表明,以种子作为外植体可获得较高的愈伤组织诱导率(29.05%),但目前对于最适激素浓度没有统一结论,其范围从1~4mg/L不等,对愈伤组织的诱导效果也未达到令人满意的水平,仍需要深入研究。
, http://www.100md.com
在对羊草愈伤组织的应用方面,可以以羊草种子诱导出的愈伤组织为材料,用含有NaCl的培养基和含有NaHCO3与Na2CO3的混合盐培养基进行培养,测定羊草愈伤组织的耐盐性,结果表明羊草愈伤组织对NaCl最大耐受强度为180mmol/L;对NaHC03与Na2CO3的混合盐的最大耐受强度为4mmol/L中性盐(NaCl)与碱性盐(NaHCO3与Na2CO3)对羊草愈伤组织的胁迫机制明显不同,国内外对于愈伤组织的培养大多应用于转基因,但在羊草方面进行的该项研究却很少,刘公社将携带PAT基因的质粒通过基因枪法转化羊草愈伤组织。然后在筛选培养基上进行培养,筛选抗性愈伤组织并转接到分化培养基上,得到再生苗,然后接种到含有筛选剂的生根培养基上培养后得到转基因羊草小苗,该研究已获得耐除草剂的羊草新品种专利,曲同宝等用基因枪将BADH基因转入由羊草成熟胚诱导出的胚性愈伤组织中,获得了转基因植株,经过PCR检测证明外源基因已整合到羊草基因组中并得以表达,虽然转入羊草的基因都可被检测到已整合人羊草基因组中,而且也得到表达,但是对于转基因羊草对周围生态环境的影响还未见相关报道,筛选突变体是羊草愈伤组织的另一用途,陈晖等用组织培养方法筛选获得羊草抗羟脯氨酸(HYP)变异系HR20-8,该变异系细胞内游离氨基酸和蛋白质组分氨基酸含量均发生了较大的变化,与供体对照比较,分别提高2.35倍和1.40倍,其中,游离脯氨酸和蛋白质组分脯氨酸分别提高6.6倍和3.0倍,且脯氨酸合成途径必需的r-谷氨酸激酶的活性提高了2.5倍。
, 百拇医药
3 羊草酶蛋白类研究
蛋白质是生物体生命中的第一重要物质,是生理功能的执行者,是生命现象的直接体现者,同时能够调控相关基因的表达,植物对抗非生物胁迫必然有蛋白质的参与,比如耐冷蛋白、热休克蛋白、水通道蛋白、赤霉素信号传导蛋白等,从羊草中检测这些蛋白的含量以及克隆表达该蛋白的基因对于研究羊草耐逆分子机理和改善羊草品质都具有重要意义。
目前对于羊草酶蛋白的研究还远远不够,主要有细胞色素氧化酶、过氧化物酶、脂酶同工酶等,其应用也仅局限于阐明羊草的遗传分化,通过聚类分析可以研究羊草种群在不同地理及生态环境中羊草在分子水平上细胞色素氧化酶同工酶存在着种内分化,羊草在同工酶水平上的分化受多个环境因子的综合影响,而且与羊草耐寒性能存在一定的内在联系,张丽萍等对采自同一天然草地上叶片呈黄绿色、灰绿色两种类型羊草的根、茎、叶的过氧化物同工酶、脂酶同工酶进行了分析比较,结果表明,两种叶色羊草,其相同组织的过氧化物同工酶谱及脂酶同工酶谱基本一致,两种羊草叶片呈现不同颜色只属不同生态型,磁场处理不仅可以促进羊草的生长。而且还能提高羊草的抗盐碱性,磁场使羊草过氧化物酶(POD)活性提高,并且诱发了一条新的同工酶带,张卫东等认为羊草自交不孕的原因是自交不亲和性障碍。并利用禾本科植物自交不亲和性有关的硫氧还蛋白(thsioredoxin)^基因设计的引物在羊草DNA中检测到预期片段,说明硫氧还蛋白h基因可能与羊草的自交不亲和性有关,该基因现已被克隆并能够从GenBank中查到其序列。
, 百拇医药
研究羊草草原土壤酶的活性可以判断土壤的肥力,土壤肥力水平接近则土壤酶的活性相似,土壤蛋白酶、脲酶、多酚氧化酶的活性与土壤有机碳、全氮呈显著相关关系,可以反映土壤肥力水平高低,是评价土壤退化的重要指标。
4 羊草耐逆基因的分离与克隆
羊草具有耐寒、耐旱、耐盐碱的特性,并且蛋白质含量较高,说明羊草在面对非生物胁迫时高效表达能够适应、缓解或对抗相应逆境条件的物质,尤其是调控这些物质表达的酶类基因,据报道,羊草种子个体萌发期最大忍受pH范围是9.14-9.53,对于NaCl可耐受的最大强度为600mmol/L,对于Na2C03可耐受的最大强度为175mmol/L,为了弄清这种适应机制的复杂性,通过大规模的cDNA克隆或者表达序列标签(EST)的测序分离相关基因是非常重要的,Jin等采集自然生长的植物叶组织经过Na2CO3胁迫处理构建了cDNA文库,并对其EST进行测序对比分析,推断在羊草叶和根中各有39和31个非生物胁迫相关基因,这些EST资源将有助于对植物耐盐碱分子基础的深入研究和理解。
, 百拇医药
甜菜碱是在生物体内起着渗透保护作用最主要的细胞相溶性物质,编码决定该物质合成的关键酶一甜菜碱醛脱氢酶(BADH)基因已经先后从多种生物体内得到克隆,并在多种植物中进行了遗传转化。已获得了抗盐、抗寒、耐旱能力得到较大程度提高的转基因植株,某些植物体内的甜菜碱含量和BADH活性随着土壤盐碱化程度的加重而增加,因此推测甜菜碱可能与羊草耐盐碱性有关,目前羊草中的部分BADH基因片段也已经被成功克隆。
5 问题与展望
分子生物学技术自其应用以来,以其不可逆转的渗透能力和交叉能力与各个学科齐头并进、相辅相成、共同发展,许多生物现象的机理机制都要最终依赖分子生物学手段予以阐明,以往对羊草生物学以及生理生态学进行了比较深入的探讨,但对于羊草分子生物学的研究起步较晚。进展也比较缓慢,近年来,随着分子生物学研究手段和技术的进步,以及羊草遗传改良的需要。人们在羊草遗传多样性、愈伤组织培养、酶蛋白分析以及基因克隆与转化等研究领域陆续开展了一些有益的尝试,并取得了许多重要研究成果,今后应在分子水平上,如对羊草自交不亲和性,非生物胁迫耐受机理,种子休眠机理,关键酶基因的分离克隆与转化,转基因羊草对周围环境的潜在影响等诸多方面加以深入探讨与研究,必将为羊草资源的保护和合理利用提供充分的理论基础。
作者简介:孔祥军(1980—),男[满],河北承德人,博士研究生,主要从事植物抗逆分子机理研究;梁正伟(1962—),男,吉林长春人,博士,研究员,博士生导师,通讯作者,主要从事植物逆境生理生态与分子生物学研究。, http://www.100md.com(孔祥军 梁正伟)