5—ALA—纳米金光动力治疗小鼠光老化的初步研究(1)
[摘要]目的:初步探討5-ALA-纳米金光动力治疗小鼠皮肤光老化的作用。方法:48只雄性健康ICR小鼠分为正常对照组(8只)、光老化组(40只),正常组不予特殊处理,光老化组照射紫外线,肉眼观察和HE染色验证光老化模型。40只光老化组小鼠分为B组光老化对照组,C组红光组、D组纳米金组、E组5-ALA组、F组5-ALA-纳米金组,C、D、E、F组小鼠背部分别涂抹不同溶液0.5ml(分别为生理盐水、纳米金溶液、5-ALA溶液和5-ALA-纳米金组溶液)避光封包3h,红光照射10min,2周治疗1次,共治疗2次,A组为正常组对照组不予任何处理。观察各组小鼠皮肤表现和组织病理改变。结果:与A组比较,紫外线照射后,B组小鼠皮肤皮肤增厚,出现皮屑、深皱纹、缺乏弹性等光老化特征;组织切片显示,B组小鼠表皮厚度[(168.235±13.665)μm]较A组[表皮(87.165±2.627)μm]增厚(P<0.05),而胶原纤维面积密度[(7.390±2.5)%]均较A组[(40.114±3.0)%]明显减少(P<0.05)。与B组相比,C、D、E和F组小鼠的表皮变薄[分别为(154.458±2.942)μm,(114.958±2.229)μm,(50.623±4.203)μm和(31.694±1.970)μm,P<0.05],胶原纤维面积密度增加[分别为(15.840±3.0)%,(27.320±2.5)%,(60.812±2.0)%和(70.024±3.0)%,P<0.05],其中以F组效果最显著。结论:5-ALA结合体能提高光动力疗法治疗小鼠光老化的疗效,同时纳米金的光热作用可能用于治疗光老化。
, 百拇医药
[关键词]皮肤;光老化;光动力;纳米金;5-氨基乙酰丙酸;HE染色;胶原纤维;小鼠
[中图分类号]R751 [文献标志码]A [文章编号]1008-6455(2018)11-0137-04
Abstract: Objective To primarily discuss the effects of using 5-ALA- nanogold for the treatment of photoaged mice irradiated with 640nm red light. Methods 48 ICR male mice are randomly divided into normal control group (8 mice) and photoaging group (40 mice) with ultraviolet irradiation,then we verify the success of photoaging mice models utilizing HE staining and gross inspection.Second A total of 40 photoaging mice are equally devided in five groups: photoaging control group(group B) receiving no treatment, red laser group (group C),nanogolds group (group D),5-ALA group (group E)and 5-ALA-nanogold group(group F).The dorsal skin of group C,D,E and F’ mice are applied 0.5ml different kinds of solutions (respectively normal saline, nanogald, 5-ALA and 5-ALA-nanogold), then receiving red light irradiation for 10min after covering with plastic mulch for 3 hours, and received a second treatment after two weeks. The normal control group without treatment is named as group A. The dorsal skin of each group mice are analysed by clinical manifestations and histopathologic changes. Results Compared with group A, the mice skin of group B shows the photoaging charactristics such as thickened and hardened skin, loss of resilience, deep winkles and dandruffs affter irradiation from UV. HE staining show the epidermis thickness of group B[(168.235±13.665)μm] is significantly thickener than group A[(87.165±2.627)μm] (P<0.05), and the collagen fiber area density of group B [(7.390±2.5)%] is significantly reduction than group A [(40.114±3.0)%] (P<0.05). The epidermis thickness of group C, D, E, F are respectively thinner than group B[respectivly (154.458±2.942)μm,(114.958±2.229)μm,(50.623±4.203)μm and (31.694±1.970)μm,P<0.05] and the collagen fiber area density of group C, D, E, F are significantly on the increase [respectively (15.840±3.0)%, (27.320±2.5)%, (60.812±2.0)% and (70.024±3.0)%, P<0.05] than group B, of which the most significant effect is group F. Conclusion 5-ALA and nanogold can cooperativly effect photodynamic therapy for photoaging mice skin and the photothermal effect of nanogold may be able to treat skin photoaging., 百拇医药(葛芹 刘亚乐 李张军)
, 百拇医药
[关键词]皮肤;光老化;光动力;纳米金;5-氨基乙酰丙酸;HE染色;胶原纤维;小鼠
[中图分类号]R751 [文献标志码]A [文章编号]1008-6455(2018)11-0137-04
Abstract: Objective To primarily discuss the effects of using 5-ALA- nanogold for the treatment of photoaged mice irradiated with 640nm red light. Methods 48 ICR male mice are randomly divided into normal control group (8 mice) and photoaging group (40 mice) with ultraviolet irradiation,then we verify the success of photoaging mice models utilizing HE staining and gross inspection.Second A total of 40 photoaging mice are equally devided in five groups: photoaging control group(group B) receiving no treatment, red laser group (group C),nanogolds group (group D),5-ALA group (group E)and 5-ALA-nanogold group(group F).The dorsal skin of group C,D,E and F’ mice are applied 0.5ml different kinds of solutions (respectively normal saline, nanogald, 5-ALA and 5-ALA-nanogold), then receiving red light irradiation for 10min after covering with plastic mulch for 3 hours, and received a second treatment after two weeks. The normal control group without treatment is named as group A. The dorsal skin of each group mice are analysed by clinical manifestations and histopathologic changes. Results Compared with group A, the mice skin of group B shows the photoaging charactristics such as thickened and hardened skin, loss of resilience, deep winkles and dandruffs affter irradiation from UV. HE staining show the epidermis thickness of group B[(168.235±13.665)μm] is significantly thickener than group A[(87.165±2.627)μm] (P<0.05), and the collagen fiber area density of group B [(7.390±2.5)%] is significantly reduction than group A [(40.114±3.0)%] (P<0.05). The epidermis thickness of group C, D, E, F are respectively thinner than group B[respectivly (154.458±2.942)μm,(114.958±2.229)μm,(50.623±4.203)μm and (31.694±1.970)μm,P<0.05] and the collagen fiber area density of group C, D, E, F are significantly on the increase [respectively (15.840±3.0)%, (27.320±2.5)%, (60.812±2.0)% and (70.024±3.0)%, P<0.05] than group B, of which the most significant effect is group F. Conclusion 5-ALA and nanogold can cooperativly effect photodynamic therapy for photoaging mice skin and the photothermal effect of nanogold may be able to treat skin photoaging., 百拇医药(葛芹 刘亚乐 李张军)
参见:首页 > 新闻 > 医药前沿 > 纳米专题