眼睛运动如何与记忆相关?(4)
[21] Biscaldi M, Gezeck S, Stuhr V. Poor saccadic control correlates with dyslexia. Neuropsychologia, 1998, 25: 1189~1202
[22] Gilchrist L D, Harvey M. Refixation frequency and memory mechanisms in visual search. Current Biology, 2000, 10: 1209~1212
[23] Chaffin R, Morris R K, Seely R E. Learning new word meanings from context: A study of eye movements. Journal of Experimental Psychology: Learning, Memory and Cognition, 2001, 27(1): 225~235
[24] Ditterich J, Eggert T, Straube A. Fixation errors and timing in sequences of memory-guided saccades. Behavioural Brain Research, 1998, 95: 205~217
[25] McPeek R M, Maljkovic V, and Nakayama K. Saccades require focal attention and are facilitated by a short-term memory system. Vision Research, 1999, 39(8): 1555~1566
[26] Mitchell J P, Macrae C N, GilchristI D. Working Memory and the Suppression of Reflexive Saccades. Journal of Cognitive Neuroscience, 2002, 14: 95~103
[27] Eggert T, Sailer U, Ditterich J, Straube A. Differential effect of a distractor on primary saccades and perceptual localization. Vision Research, 2002, 42: 2969~2984
[28] Land M F, Furneaux S. The knowledge base of the oculamotor system. Philosophical Transaction of Royal Society, 1997, 352: 1231~1239
[29] Gnadt J W, Bracewell R M, et al. Sensorimotor Transformation during eye movement to remembered visual targets. Vision Research, 1991, 31: 693~715
[30] Christman S D, Garvey K J, et al. Bilateral eye movement enhance the retrieval of episodic memories. Neuropsychology, 2003, 17(2): 229~231
[31] Hodgson T L, Dittrich W H, et al. Eye movements and spatial working memory in Parkinson’s disease. Neuropsychologia, 1999, 37: 927~938
[32] van den Hout M, Muris P, Salemink E, et al. Autobiographical memories become less vivid and emotional after eye movements. British Journal of Clinical Psychology, 1999, 40 (2): 121~130
[33] Kerzel D. Centripetal Force Draws the Eyes, Not Memory of the Target, Toward the Center. Journal of Experimental Psychology: Learning, Memory, and Cognition, 2003, 29(3): 458~466
[34] Gray W, Schunn, C, Peebles D, Cheng P C H. Extending task analytic models of graph-based reasoning: A cognitive model of problem solving with Cartesian graphs in ACT-R/PM. Cognitive Systems Research, 2002, 3: 77~86
[35] Hodgson T L, Tiesman B, Owen A M, Kennard C. Abnormal gaze strategies during problem solving in Parkinson’s disease. Neuropsychologia, 2002, 40: 411~422
[36] Snitz B E, Curtis C E, Zald D H, et al. Neuropsychological and oculomotor correlates of spatial working memory performance in schizophrenia patients and controls. Schizophrenia Research, 1999, 38: 37~50
[37] Epelboim J, Suppes P. A model of eye movements and visual working memory during problem solving in geometry. Vision Research, 2001, 41: 1561~1574
[38] Unsworth N, Schrock J C, Engle R W. Working Memory Capacity and the Antisaccade Task: Individual Differences in Voluntary Saccade Control. Journal of Experimental Psychology: Learning, Memory, and Cognition, 2004, 30(6): 1302~1321
[ 上 页 ] [ 下 页 ](丁锦红 张 钦 郭春彦)
閻庣敻鍋婇崰鏇熺┍婵犲洤妫橀柛銉㈡櫇瑜帮拷
闂佺ǹ绻楀▍鏇㈠极閻愮儤鍎岄柣鎰靛墮椤庯拷
闁荤姴娲ょ€氼垶顢欓幋锕€绀勯柣妯诲絻缂嶏拷
闂佺懓鍚嬬划搴ㄥ磼閵娾晛鍗抽柡澶嬪焾濡拷
|