当前位置: 首页 > 期刊 > 《健康必读·下旬刊》 > 2012年第1期
编号:12701892
浅谈现代药物合成抗生素的研究进展
http://www.100md.com 2012年1月1日 健康必读·下旬刊 2012年第1期
     【中图分类号】R97 【文献标识码】A 【文章编号】1672-3783(2012)01-0187-01

    【摘要】 目的:探讨药物合成抗生素的现代研究进展。方法:通过对抗生素中的四环素类、β-内酰胺类、大环内酯类及氨基糖苷类的化学结构进行分析,综述对于上述抗生素的现代新药开发的研究进展。结果:药物合成抗生素具有共同的生物特性及结构特点。结论:依据药物合成抗生素的共性,可进一步改造及研发新型的抗生素药物,具有重要的临床意义。

    【关键词】 药物合成抗生素;研究进展

    抗生素(Antibiotics)是指某些细菌、放线菌、真菌等微生物的次级代谢产物,或用化学方法合成的相同结构或结构修饰物,在低浓度下对各种病原性微生物或肿瘤细胞有选择性杀灭、抑制作用的药物。抗生素的来源有两种:一种是微生物的发酵产物,称为微生物合成(Microbial synthesis);另一种是半合成及合成的衍生物。抗生素按化学结构分为B一内酰胺类、四环素类、氨基糖苷类、大环内酯类及其他类别。
, 百拇医药
    1 四环素类抗生素的合成及其研究进展 四环素抗生素属于碱性的广谱抗生素,从链霉菌属中提取分离的一种天然产物或由其半合成的衍生物。十二氢化并四苯是四环素类抗生素的基本化学结构,并随其化学结构被剖析,第二代四环素包括米诺环素、多西环素、美他环素等半合成品逐步被研发并应用于临床。但随着四环素类抗生素近年来的临床广泛应用,由其产生的耐药菌株也随之日益增多。对此,合成新型的四环素类化合物是目前的研究热点之一,如近年来,Dactylosporajium通过发酵获取伴糖残基的四环素衍生物(Dactylocycline),其化学结构与以往的四环素衍生物的C-6位的羟基及甲基构象相反。另外,Dactylocycline除对革兰阴性菌不具活性,对于四环素耐药或敏感的革兰阳性菌皆有良好活性,其脱糖衍生物Aglycone对于革兰阴性菌也有活性。广谱四环素类衍生物C-9-甘氨酞四环素(Glycylcy-clines)也是新研发的高效抗生素药物,其对四环素内含排出因子(TetE,K和L)或核糖体保护因子(TetM和TetO)的敏感或耐药的菌株皆有效,并且对于万古霉素、米诺环素及β-内酞胺类等抗生素均耐药的革兰氏菌株亦有效。除此之外,还有DMG-DMDOF、TBG-MINO等新型四环素衍生物也在研发当中,均具有广阔的应用前景。
, 百拇医药
    2 β-内酰胺类抗生素的合成 

    β-内酞胺类抗生素属于分子中内含β-内酞胺环的抗生素。以头孢菌素和青霉素为代表。头孢菌素的分子内含氢化噻嗪环及β-内酰胺环共同合成的四元-六元环稠合系统。青霉素具有半合成青霉素的改造的历史,因此临床上许多研究针对头孢菌素C进行的改造,如7-氨基去乙酰氧基头孢烷酸三氯乙酯(7-ADAC)、7-氨基头孢霉烷酸(7-ACA),皆为合成头孢菌素重要的中间体。近年来,临床研究发现,对C3-位的侧链进行改造,可有效改善药效学性质、药物动力学特性及提高其抗菌活性等,达到β-内酰胺酶的稳定,依据其化学结构的特点及C3-位的功能化,头孢菌素的研究可分为以下几类:

    2.1 C3-位是杂原子取代的甲基? C3-位的功能化产物主要包括第一代的头孢菌素头孢唑林、第二代的头孢菌素头孢呋辛、第三代的头孢菌素头孢他定及第四代的头孢菌素头孢匹罗等,近年来对于此类化合物,注重开发其双重活性,如内含喹诺酮类的头孢菌素,其良好的抗菌活性是临床应用的优势。
, http://www.100md.com
    2.2 C3-位是羟基、甲基、卤素或氢? 通常常见为第二代的头孢菌素头孢克洛、第四代的头孢菌素头孢布烯。主要通过取代C3-位的甲基,生成3-去乙酰氧基头孢菌素,如临床上常用的第一代的头孢拉定、头孢菌素及头孢氨苄。

    2.3 C3-位是炔基、共轭乙烯基或乙烯基? 代表性的药物是第三代的头孢菌素头孢克肟。

    近年来,对于此类型的C3-位的修饰有众多的研究报道,如Barrett等研究发现,头孢菌素带炔基可增强对革兰阳、阴性菌的抑制活性;Hara等研究发现,YM-32825,其抗菌活性较强等。

    2.4 C3-位直接与杂原子相连的去甲头孢菌素? 近年来对于此方面的研究越来越多,Toyama的报告中指出,C3-位杂原子若是硫的化合物,能获得较好的抗菌活性;另外美国专利报道中也发现,C3-位被苯硫醚类化合物所取代,可增强其体外的活性。
, 百拇医药
    3 大环内酯类抗生素的合成 

    大环内酯类抗生素的命名是依据其结构特点而定的广谱抗生素,主要的构成是后修饰基团与多元内酯环相连。大环内酯类以大环内酯作为母体,并依照内酯环的碳原子数目进行分类,一般是12~20元环,通过大环的羟基,以1~3个去氧氨基糖与苷键发生缩合生成碱性苷。大环内酯类抗生素经过糖基化、甲基化及羟基化等修饰,可合成以14元环与16元环为主的抗生素,14元环主要为红霉素及其衍生物,16元环则主要为柱晶白霉素、泰洛星、麦迪霉素、螺旋霉素及其半合成的酰化衍生物。首个被成功开发的大环内酯抗生素是红霉素(Erythromycin,EM),广泛在临床应用于呼吸系统感染的治疗。但随着近年来临床使用的经验增多,红霉素具有一定的缺陷,如对于酸性环境的生物利用度较低;对于革兰阴性菌的敏感性低,易产生耐药;对于胃肠道的刺激作用较大等。近年来,研究发现,红霉素中的C-9位羰基、C-8位氢及C-6位羟基进行改造,如羟胺结合羰基生成红霉肟,进而缩合侧链,可获得罗红霉素(Azithromycin),经Beckman将羰基重排,可生成阿奇霉素等,均可有效地提高红霉素的生物活性及抗敏感菌的活性。
, 百拇医药
    4 氨基糖苷类抗生素的合成 

    氨基糖苷类抗生素属于广谱的抗感染类药物,临床上通常应用于多种细菌所引起的感染方面的治疗。氨基糖苷类主要通过选择性地结合编码的16S rRNA上的A位点,从而加强其抗菌的活性。该类抗生素的耐药产生主要是由于细菌对于氨基糖苷修饰酶(AME)的过度表达,临床上对于氨基糖苷类抗生素的结构特性进行改造,使其耐药菌的抗菌活性重新恢复,从而研发新型的抗菌药物。氨基糖苷类抗生素的耐药机制主要是由于与RNA的作用靶点的结构信息进行结合,加强其耐药菌的抗菌活性,同时为靶向药物的设计提供了科学依据,从而逐渐研究开发新型的新氨基糖苷类衍生物。经研究发现,采用“糖基化”方法可研发新型半合成的氨基糖苷类抗生素,主要内容是通常对氨基糖苷的母核结构部分进行重新处理,如巴龙霉胺(paromine)或新霉胺(neamine)分子,将其原始糖使用部分合成的方式进行结构的替换,此法直接通过改造天然的氨基糖苷类抗生素,对比重新组合的不同特征结构的单元,其抗菌活性更强。由于新导入的结构特征可不受氨基糖苷的骨架所限制,故新产生的药物可依据此理论将各种糖连接应用于结构的设计中,探索研究新的结构修饰的方法。综上所述,依据药物合成抗生素的共性,可进一步改造及研发新型的抗生素药物,具有重要的临床意义。

    参考文献 

    [1] 邹国利.新型四环素类抗生素-丁甘米诺环素[J].国外医药抗生素分册,2004,25:278-828.

    [2] 刘姝晶,陈耀祖.头孢菌素c3-位功能化及合成中间体的研究进展[J].国外医药-抗生素分册,1999,20(6):241-258., http://www.100md.com(商海燕)