当前位置: 首页 > 期刊 > 《健康必读(上旬刊)》 > 20184
编号:13593021
视网膜眼底图像黄斑中央凹检测算法综述(2)

     本文總结了视网膜眼底图像黄斑中央凹检测的算法,回顾了中央凹检测算法的各个发展阶段,最后总结了眼底图像中央凹检测算法存在的难点。

    随着医生认知的提高,更多的先验知识将被算法设计者所考虑,精度将会进一步提高。随着弱监督学习的进一步发展,神经网络模型将需要越来越少的标签就可以达到临床需要的精度。随着硬件科技的不断提高,医疗图像的成像质量也会得到改善。中央凹的检测算法也将朝着更加效率,更加容易被临床使用的方向发展。

    参考文献

    [1]C. Sinthanayothin, J. F. Boyce, H. L. Cook, and T. H. Williamson, “Automated localisation of the optic disc, fovea and retinal blood vessels from digital color fundus images,” Br. J. Ophthalmol., vol. 4, no. 83, pp. 902–910, 1999.

    [2]L. Gagnon, “Procedure to detect anatomical structures in optical fundus images,” Med. …, vol. 4322, pp. 8–10, 2001.

    [3]H. Li and O. Chutatape, “Automated Feature Extraction in Color Retinal Images by a Model Based Approach,” IEEE Trans. Biomed. Eng., vol. 51, no. 2, pp. 246–254, 2004.

    [4]O. Chutatape, “Fundus foveal localization based on vessel model,” Annu. Int. Conf. IEEE Eng. Med. Biol. - Proc., pp. 4440–4444, 2006.

    [5]K. W. Tobin, E. Chaum, V. Priya Govindasamy, and T. P. Karnowski, “Detection of anatomic structures in human retinal imagery,” IEEE Trans. Med. Imaging, vol. 26, no. 12, pp.1729–1739, 2007.

    [6]M. Niemeijer, M. D. Abràmoff, and B. Van Ginneken,“Segmentation of the Optic Disc , Macula and Vascular Arch in Fundus Photographs,” vol. 26, no. 1, pp. 116–127, 2007.(吕东晔)
上一页1 2
    濞e洠鍓濇导鍛閸涱剛杩旈柛娆忓€介埀顒€鍠涚槐婵囩▔瀹ュ棛鈧垶骞嬮幇顏呭床濞达絾娲戠粻锝咁嚈妤︽鍞撮柕鍡曠劍鐢綊鎳¢幇顓炵仐闁圭ǹ娲ょ槐鈺呭Υ閸屾稒鐎紒鏃傚Х婢ф寮堕崘銊ф剑濞存粌楠哥敮顐︽媼濡炲墽绋婇柡澶婂暕濮瑰鏁嶅畝鍐仧闁诡喓鍔忛缁樼▔閻戞﹩鍔冮柡鍌氭矗缁楀鈧绮忛~锕傚绩鐠鸿櫣绉垮〒姘☉閵囧洨鈧娉涢崢銈囨嫻瑜版帗顫夐悹鍥︾串缁辨繄鎷犻悜钘変粡濞寸姾鍩栭崹銊╂偨娴e啰妯堥梺顐f皑閻擄繝骞嬮幋婊勭拨闁挎稑鏈崹婊勭椤掍焦鏆柛鎺嶅嵆閳ь剚姘ㄩ悡锟犲触鎼搭垳绀夊ù鍏兼皑閻濇盯宕¢崘鑼闁诡喓鍔庡▓鎴炴媴濠婂啯鎯傚ù鐘插濠€鎵磾閹寸姷褰查柛鎺斿█濞呭酣濡撮敓锟�

   鐎甸偊鍠曟穱濠囧棘閸モ晝褰�  闁稿繗娅曢弫鐐烘儌閻愵剙顎�  閻犲洤瀚鎴﹀礄閻樻彃缍�  闁瑰吋绮庨崒銊╁即閺夋埈妯�