临床医学数据的分析方法与利用(2)
2.2 数据挖掘数据挖掘在研究领域中被称作“数据库中知识的发现”[11]。医学数据挖掘是从大量医学数据中通过各种算法来寻找疾病新规律的过程。数据挖掘技术包涵多种算法,不同样本类型通过不同算法对临床数据进行分类,建立医学模型。大数据的分析需要与计算机技术结合,机器学习就是统计学、算法理论与人工智能结合的一门交叉学科,并在当今无人驾驶技术、人类基因组技术中获得大力发展。
人工神经网络算法是模仿大脑神经网络的结构建立的信息处理方法,它的特征是“计算机代码+数学函数”,它的本质是“学习”,将训练数据在一定的“学习规则”中进行学习,获取特征信息和参数后建立人工神经网络,新的数据通过神经网络计算出对应的输出,这就是“感知器学习规则”[12]。例如要评价A家不同医院的医疗水平,可以先用B家医院的数据作为训练数据,医护人员、床位、就诊数量和死亡率5个指标作为输入(X),B家医院建立的知识库作为突出权值(W),经过处理得到输出(Y),经学习后网络会自动处理A家医院的数据(图2)。
决策树算法和支持向量机与神经网络算法较相似,都是学习型的机制,是两种常用的数据分类方法。决策树算法通过构建决策树分类器处理不同的数据类型,计算出各特征属性的信息增益后 ......
您现在查看是摘要页,全文长 4825 字符。