当前位置: 首页 > 期刊 > 《医药产业资讯》 > 2019年第33期
编号:13438869
人工智能在新药研发领域中的应用(5)
http://www.100md.com 2019年11月25日 《中国医药导报》 2019年第33期
     [19] Günter K,Thomas U,Andreas M,et al. DeepTox:toxicity prediction using deep learning [J]. Toxicol Lett,2017, 280:S69.

    [20] Shin M,Jang D,Nam H,et al. Predicting the absorption potential of chemical compounds through a deep learning approach [J]. IEEE/ACM Trans Comput Biol Bioinform,2018,15(2):432-440.

    [21] Keiser MJ,Roth BL,Armbruster BN,et al. Relating protein pharmacology by ligand chemistry [J]. Nat Biotechnol,2007,25(2):197-206.

    [22] Pogodin PV,Lagunin AA,Filimonov DA,et al. PASS targets:ligand-based multi-target computational system based on a public data and naive bayes approach [J]. SAR QSAR Environ Res,2015,26(10):783-793.

    [23] Mervin LH,Afzal AM,Drakakis G,et al. Target prediction utilising negative bioactivity data covering large chemical space [J]. J Cheminform,2015,7:51.

    [24] Steindl TM,Schuster D,Laggner C,et al. Parallel screening:a novel concept in pharmacophore modeling and virtual screening [J]. J Cheminform,2006,46(5):2146-2157.

    [25] Xu H,Aldrich MC,Chen Q,et al. Validating drug repurposing signals using electronic health records:a case study of metformin associated with reduced cancer mortality [J]. J Am Med Inform Assoc,2015,22(1):179-191.

    [26] 動脉网蛋壳研究院.2017医疗大数据和人工智能产业报告[R].2017:101-110.

    [27] 金小桃.健康医疗大数据[M].北京:人民卫生出版社,2018:159-160.

    (收稿日期:2019-05-07 本文编辑:李亚聪), 百拇医药(孙雅婧 李春漾 曾筱茜)
上一页1 2 3 4 5