眼部给药研究进展(1)
(湖北中医学院 药学院,湖北 武汉 430065)
摘 要:由于眼部存在诸多给药屏障,使得许多药物对眼部疾病的防治效果欠佳。为了使药物更好地发挥药效,许多新的给药方法和技术已成为研究热点。对近年来国内外眼部给药的研究进展作一综述。
关键词:眼部给药;新剂型;新技术;药剂学
中图分类号:R988.1文献标识码:A文章编号:1673-2197(2009)03-0125-04
由于眼睛特殊的解剖学构造及生理和生物化学性质,使得外源性物质难以进入其中。这里的外源性物质也包括了用于治疗眼部疾病的药物,上述因素造成最突出的问题就是眼部给药后生物利用度低,个别药物由于鼻泪管引流会引起全身不良反应。另外,传统的滴眼剂易从眼部流出,需要多次给药,眼膏剂易引起雾视,从而导致病人顺应性差。为此,广大的药学工作者一直试图研究采用各种领域的新技术、新方法来提高眼部给药的生物利用度,改善药物疗效,增加临床用药的安全性和病人的顺应性。鉴于此,眼部给药系统的研究越来越成为人们注目的焦点,本文就其研究进展进行综述。
, http://www.100md.com
1 前体药物(Prodrugs)
前体药物是指将活性药物衍生化成药理惰性物质,但该惰性物质在体内经化学反应或酶反应后,能够回复到原来的母体药物,再发挥治疗作用。前体药物相比于其母体药物而言,一方面能够改善其母体药物的膜渗透能力、溶解度和稳定性等物理化学性质;另一方面,还可以减轻快速代谢,掩盖不良气味,易于开发成制剂等。SHIRASOKI[1]等报道了多种药物通过采用了前体药物的方法,改善了药物的角膜透过能力。更昔洛韦的二肽单酯前体药物相比于其母体药物有着更好的角膜透过性和生物利用度[2]。阿昔洛韦也被作为模型药物用于前体药物的研究。与更昔洛韦相似,也是采用氨基酸或者肽类来修饰母体药物的,在改善了母体药物水溶性的同时,也降低了其毒性,并且增加了药物在体内的活性[3]。
软药(Soft drugs)是前体药物中特殊的一类,它被设计成易代谢失活,在完成治疗作用后,按预先规定的代谢途径和可以控制的速率分解、失活并迅速排出体外,从而避免药物的蓄积毒性。可见,其最主要的特点是在发挥出最大的治疗效果的同时,产生最小的副作用。软药研究的热点主要集中在治疗眼部炎症的甾体类抗炎药和治疗青光眼的β-受体阻断剂的开发[4]。
, 百拇医药
2 凝胶(Hydrogel)
2.1 生物粘附性凝胶
生物粘附性凝胶一般以具有生物粘附性的高分子材料为载体,增加药物制剂的粘度,延长药物在眼部的滞留时间,从而提高药物的生物利用度。常用的高分子材料有:丙纤维素(HPC)、聚丙烯酸类(PAA)、聚乙烯醇(PVA)、高分子量PEG、羟丙甲纤维素(HPMC)、聚半乳糖醛酸(PLA)、木质葡萄糖(xyloglucan)、葡萄糖(Dextrans)等。张宁等[5]采用羟丙甲纤维素(HPMC)制备氟啶酸眼用凝胶。HPMC的加入,增加了制剂的粘度。滴入眼部后,与角膜前的粘糖蛋白结合,延长了药物在眼部的滞留时间。高分子材料的加入,虽然能够增大制剂的粘度,但是由于粘度的增大,可能引起眼部的不适,并且容易导致剂量不易控制。
2.2 即型凝胶
即型凝胶的概念是在20世纪80年代提出的。制剂以滴入的形式滴入眼穹窿,在眼部的生理条件下,经相转变形成粘弹性胶体。眼部滞留时间的增加是最显著的特点。根据在眼表面发生相转变的机理的不同,即型凝胶可分为温度敏感型、pH敏感型、离子敏感型。
, http://www.100md.com
2.3 温度敏感型
温度敏感型凝胶的机理为由于高分子材料中氢键或疏水作用,在温度改变的条件下,导致聚合物的物理状态发生改变。温度敏感型凝胶在冷藏或室温下为溶液状态,当温度升到33~37℃时即形成凝胶。常用的高分子材料有:Poloxamer、羟乙基纤维素、木聚糖等。其中Poloxamer是最常用的高分子材料,常被单独使用[6]或联合其它高分子材料一并使用[7,8],形成混合型的即型凝胶。
2.4 pH敏感型
pH敏感型凝胶在pH<5时不能形成凝胶,当与泪液(pH7.2~7.4)接触几秒内即形成凝胶。这类常用的载体高分子材料有:卡波姆(Carbopol)、聚卡波菲(Polycarbophil)、聚丙烯酸树脂类(Eudragit)和PVP。卡波姆是此类中的代表,由于其分子结构中存在大量的羧基集团,在水中溶胀可以形成低粘度溶液,在碱性条件下,羧基离子化后分子链膨胀伸展形成凝胶。
, 百拇医药
2.5 离子敏感型
离子敏感型凝胶是由高分子材料与泪液中的电解质作用后,发生相转变而形成凝胶。
所用载体有gellan胶和海藻酸等。gellan胶是较理想的眼用材料,它在水溶液当中形成阴离子多糖,在与泪液中的一价、二价的阳离子结合后粘度变大形成凝胶,从而长时间维持药效。
3 微乳(Microemulsion)
微乳是粒径在10~1000nm之间热稳定的乳剂。微乳具有热稳定性好、粒径小、光透过性好、生产费用低、易制备等特点。为此,将微乳作为眼部给药载体的研究引起了人们的广泛关注。制备微乳时,选择合适的表面活性剂/助表面活性剂不仅可以增加微乳的稳定性,还可以改善难溶性药物的溶解度[9]。微乳除了可以改善难溶性药物的溶解度外,还可以增加药物的角膜透过率。A HASSE等[10]以肉豆蔻异丙酯为油相,卵磷脂为乳化剂,丙二醇和PEG-200为助乳化剂制备匹鲁卡品的微乳,采用家兔进行临床前的安全性评价。研究结果表明:该制剂对家兔眼组织无刺激,并且显示出缓慢释药特性。另一种以盐酸匹鲁卡品为模型药物的微乳,通过改变组分中水的含量可以改变微乳制剂的流变学性质,从而增加了药物在眼部的滞留时间,提高了生物利用度[11]。
, http://www.100md.com
4 脂质体(Liposomes)
脂质体是由磷脂双分子层构成,类似于生物膜,易于生物融合,可以促进药物对角膜的穿透。脂质体的粒径、表面所带电荷、制备方法以及制备脂质体时所用的类脂成分是影响其性质的关键因素。脂质体有小单室脂质体(SUV)、多室脂质体(MLV)和大单室脂质体(LUV)3种类型。脂质体作为眼部给药载体的研究主要集中在增加角膜透过率上。Y SHENAND等[12]比较了更昔洛韦脂质体与更昔洛韦滴眼液对兔角膜的穿透能力和眼内的组织分布。结果表明:更昔洛韦脂质体的角膜透过能力是更昔洛韦滴眼液的3.9倍,药时曲线下面积(AUC)则为更昔洛韦滴眼液的7倍。环丙沙星制备成多室脂质体(MLV)后,在眼部不易被泪液冲刷而造成药物流失,并且其药物释放特性取决于所用的类脂的种类[13]。
5 纳米混悬体(Nanosuspensions)
纳米混悬体是将水溶性不好的药物分散到合适的分散介质当中,以表面活性剂为稳定剂而形成的胶粒系统。纳米混悬体常采用高分子聚合物作为载体来增加药物的溶解度和生物利用度。文献[14]报道将氢化可的松、泼尼松龙和地塞米松3种甾体类抗炎药制备成纳米混悬体后,体内研究结果表明显著增加了它们在眼部的吸收。将药物制备成纳米混悬体后,也可以增加制剂的稳定性。R PIGNATELLO等[15]以EUDRAGIT RS100 和RL100为载体制备氯克罗孟(Cloricromene)的纳米混悬体,一方面改善了药物的生物利, http://www.100md.com(卢 山 肖学成)
摘 要:由于眼部存在诸多给药屏障,使得许多药物对眼部疾病的防治效果欠佳。为了使药物更好地发挥药效,许多新的给药方法和技术已成为研究热点。对近年来国内外眼部给药的研究进展作一综述。
关键词:眼部给药;新剂型;新技术;药剂学
中图分类号:R988.1文献标识码:A文章编号:1673-2197(2009)03-0125-04
由于眼睛特殊的解剖学构造及生理和生物化学性质,使得外源性物质难以进入其中。这里的外源性物质也包括了用于治疗眼部疾病的药物,上述因素造成最突出的问题就是眼部给药后生物利用度低,个别药物由于鼻泪管引流会引起全身不良反应。另外,传统的滴眼剂易从眼部流出,需要多次给药,眼膏剂易引起雾视,从而导致病人顺应性差。为此,广大的药学工作者一直试图研究采用各种领域的新技术、新方法来提高眼部给药的生物利用度,改善药物疗效,增加临床用药的安全性和病人的顺应性。鉴于此,眼部给药系统的研究越来越成为人们注目的焦点,本文就其研究进展进行综述。
, http://www.100md.com
1 前体药物(Prodrugs)
前体药物是指将活性药物衍生化成药理惰性物质,但该惰性物质在体内经化学反应或酶反应后,能够回复到原来的母体药物,再发挥治疗作用。前体药物相比于其母体药物而言,一方面能够改善其母体药物的膜渗透能力、溶解度和稳定性等物理化学性质;另一方面,还可以减轻快速代谢,掩盖不良气味,易于开发成制剂等。SHIRASOKI[1]等报道了多种药物通过采用了前体药物的方法,改善了药物的角膜透过能力。更昔洛韦的二肽单酯前体药物相比于其母体药物有着更好的角膜透过性和生物利用度[2]。阿昔洛韦也被作为模型药物用于前体药物的研究。与更昔洛韦相似,也是采用氨基酸或者肽类来修饰母体药物的,在改善了母体药物水溶性的同时,也降低了其毒性,并且增加了药物在体内的活性[3]。
软药(Soft drugs)是前体药物中特殊的一类,它被设计成易代谢失活,在完成治疗作用后,按预先规定的代谢途径和可以控制的速率分解、失活并迅速排出体外,从而避免药物的蓄积毒性。可见,其最主要的特点是在发挥出最大的治疗效果的同时,产生最小的副作用。软药研究的热点主要集中在治疗眼部炎症的甾体类抗炎药和治疗青光眼的β-受体阻断剂的开发[4]。
, 百拇医药
2 凝胶(Hydrogel)
2.1 生物粘附性凝胶
生物粘附性凝胶一般以具有生物粘附性的高分子材料为载体,增加药物制剂的粘度,延长药物在眼部的滞留时间,从而提高药物的生物利用度。常用的高分子材料有:丙纤维素(HPC)、聚丙烯酸类(PAA)、聚乙烯醇(PVA)、高分子量PEG、羟丙甲纤维素(HPMC)、聚半乳糖醛酸(PLA)、木质葡萄糖(xyloglucan)、葡萄糖(Dextrans)等。张宁等[5]采用羟丙甲纤维素(HPMC)制备氟啶酸眼用凝胶。HPMC的加入,增加了制剂的粘度。滴入眼部后,与角膜前的粘糖蛋白结合,延长了药物在眼部的滞留时间。高分子材料的加入,虽然能够增大制剂的粘度,但是由于粘度的增大,可能引起眼部的不适,并且容易导致剂量不易控制。
2.2 即型凝胶
即型凝胶的概念是在20世纪80年代提出的。制剂以滴入的形式滴入眼穹窿,在眼部的生理条件下,经相转变形成粘弹性胶体。眼部滞留时间的增加是最显著的特点。根据在眼表面发生相转变的机理的不同,即型凝胶可分为温度敏感型、pH敏感型、离子敏感型。
, http://www.100md.com
2.3 温度敏感型
温度敏感型凝胶的机理为由于高分子材料中氢键或疏水作用,在温度改变的条件下,导致聚合物的物理状态发生改变。温度敏感型凝胶在冷藏或室温下为溶液状态,当温度升到33~37℃时即形成凝胶。常用的高分子材料有:Poloxamer、羟乙基纤维素、木聚糖等。其中Poloxamer是最常用的高分子材料,常被单独使用[6]或联合其它高分子材料一并使用[7,8],形成混合型的即型凝胶。
2.4 pH敏感型
pH敏感型凝胶在pH<5时不能形成凝胶,当与泪液(pH7.2~7.4)接触几秒内即形成凝胶。这类常用的载体高分子材料有:卡波姆(Carbopol)、聚卡波菲(Polycarbophil)、聚丙烯酸树脂类(Eudragit)和PVP。卡波姆是此类中的代表,由于其分子结构中存在大量的羧基集团,在水中溶胀可以形成低粘度溶液,在碱性条件下,羧基离子化后分子链膨胀伸展形成凝胶。
, 百拇医药
2.5 离子敏感型
离子敏感型凝胶是由高分子材料与泪液中的电解质作用后,发生相转变而形成凝胶。
所用载体有gellan胶和海藻酸等。gellan胶是较理想的眼用材料,它在水溶液当中形成阴离子多糖,在与泪液中的一价、二价的阳离子结合后粘度变大形成凝胶,从而长时间维持药效。
3 微乳(Microemulsion)
微乳是粒径在10~1000nm之间热稳定的乳剂。微乳具有热稳定性好、粒径小、光透过性好、生产费用低、易制备等特点。为此,将微乳作为眼部给药载体的研究引起了人们的广泛关注。制备微乳时,选择合适的表面活性剂/助表面活性剂不仅可以增加微乳的稳定性,还可以改善难溶性药物的溶解度[9]。微乳除了可以改善难溶性药物的溶解度外,还可以增加药物的角膜透过率。A HASSE等[10]以肉豆蔻异丙酯为油相,卵磷脂为乳化剂,丙二醇和PEG-200为助乳化剂制备匹鲁卡品的微乳,采用家兔进行临床前的安全性评价。研究结果表明:该制剂对家兔眼组织无刺激,并且显示出缓慢释药特性。另一种以盐酸匹鲁卡品为模型药物的微乳,通过改变组分中水的含量可以改变微乳制剂的流变学性质,从而增加了药物在眼部的滞留时间,提高了生物利用度[11]。
, http://www.100md.com
4 脂质体(Liposomes)
脂质体是由磷脂双分子层构成,类似于生物膜,易于生物融合,可以促进药物对角膜的穿透。脂质体的粒径、表面所带电荷、制备方法以及制备脂质体时所用的类脂成分是影响其性质的关键因素。脂质体有小单室脂质体(SUV)、多室脂质体(MLV)和大单室脂质体(LUV)3种类型。脂质体作为眼部给药载体的研究主要集中在增加角膜透过率上。Y SHENAND等[12]比较了更昔洛韦脂质体与更昔洛韦滴眼液对兔角膜的穿透能力和眼内的组织分布。结果表明:更昔洛韦脂质体的角膜透过能力是更昔洛韦滴眼液的3.9倍,药时曲线下面积(AUC)则为更昔洛韦滴眼液的7倍。环丙沙星制备成多室脂质体(MLV)后,在眼部不易被泪液冲刷而造成药物流失,并且其药物释放特性取决于所用的类脂的种类[13]。
5 纳米混悬体(Nanosuspensions)
纳米混悬体是将水溶性不好的药物分散到合适的分散介质当中,以表面活性剂为稳定剂而形成的胶粒系统。纳米混悬体常采用高分子聚合物作为载体来增加药物的溶解度和生物利用度。文献[14]报道将氢化可的松、泼尼松龙和地塞米松3种甾体类抗炎药制备成纳米混悬体后,体内研究结果表明显著增加了它们在眼部的吸收。将药物制备成纳米混悬体后,也可以增加制剂的稳定性。R PIGNATELLO等[15]以EUDRAGIT RS100 和RL100为载体制备氯克罗孟(Cloricromene)的纳米混悬体,一方面改善了药物的生物利, http://www.100md.com(卢 山 肖学成)