影像组学在肺癌中的应用现状与存在问题(5)
[24] Lafata KJ,Hong JC,Geng R,et al. Association of pre-treatment radiomic features with lung cancer recurrence following stereotactic body radiation therapy[J]. Phys Med Biol,2019,64(2):1-14.
[25] Lee G,Park H,Sohn I,et al. Comprehensive computed tomography radiomics analysis of lung adenocarcinoma for prognostication[J]. Oncologist,2018,23(7):806-813.
[26] Bianconi F,Fravolini ML,Bello-Cerezo R,et al. Evaluation of shape and textural Features from CT as prognostic biomarkers in non-small cell lung cancer[J]. Anticancer Res,2018 ,38(4):2155-2160.
[27] Hosny A,Parmar C,Coroller TP,et al. Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study[J]. PLoS Med,2018,15(11):1-25.
[28] Chaddad A,Desrosiers C,Toews M,et al. Predicting survival time of lung cancer patients using radiomic analysis[J].Oncotarget,2017,8(61):104393-104407.
[29] 吳珊珊,沈桂权,高波. 肺癌影像组学研究进展[J]. 中华放射学杂志,2017,51(12):986-989.
[30] 仇清涛,段敬豪,巩贯忠,等. 影像组学可重复性问题研究进展[J]. 中华放射肿瘤学杂志,2018,27(3):327-330.
[31] 李双双,侯震,刘娟,等. 影像组学分析与建模工具综述[J]. 中国医学物理学杂志,2018,35(9):1043-1049., http://www.100md.com(杨虹 江海涛 邵国良)
[25] Lee G,Park H,Sohn I,et al. Comprehensive computed tomography radiomics analysis of lung adenocarcinoma for prognostication[J]. Oncologist,2018,23(7):806-813.
[26] Bianconi F,Fravolini ML,Bello-Cerezo R,et al. Evaluation of shape and textural Features from CT as prognostic biomarkers in non-small cell lung cancer[J]. Anticancer Res,2018 ,38(4):2155-2160.
[27] Hosny A,Parmar C,Coroller TP,et al. Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study[J]. PLoS Med,2018,15(11):1-25.
[28] Chaddad A,Desrosiers C,Toews M,et al. Predicting survival time of lung cancer patients using radiomic analysis[J].Oncotarget,2017,8(61):104393-104407.
[29] 吳珊珊,沈桂权,高波. 肺癌影像组学研究进展[J]. 中华放射学杂志,2017,51(12):986-989.
[30] 仇清涛,段敬豪,巩贯忠,等. 影像组学可重复性问题研究进展[J]. 中华放射肿瘤学杂志,2018,27(3):327-330.
[31] 李双双,侯震,刘娟,等. 影像组学分析与建模工具综述[J]. 中国医学物理学杂志,2018,35(9):1043-1049., http://www.100md.com(杨虹 江海涛 邵国良)