当前位置: 首页 > 期刊 > 《中国医学创新》 > 2011年第28期
编号:13186739
肾细胞癌淋巴结转移预测指标的Logistic回归分析(2)
http://www.100md.com 2011年10月5日 张效农 申钧 陈鹏
第1页

    参见附件。

     表2 肾细胞癌淋巴结转移影响因素的Logistic回归单因素分析(n163,α0.05)

    2.2 多因素分析 利用表2的结果,将P值<0.05的自变量和临床认为对肾细胞癌淋巴结转移有关的病理类型X7(病理类型)也入选Logistic回归模型,基于偏最大似然估计的前进法向前逐步选择自变量,进行多因素逐步回归分析,其中肿瘤大小、临床分期和Fuhrman核分级对RCC淋巴结转移有显著回归效果而选入回归方程,结果见表3。但由单因素回归分析亦可知,P值<0.05的自变量X9(贫血)未能选入回归方程并不说明其对肾细胞癌淋巴结转移无统计学意义,而可能是由于其作用被已选入的变量代替,从而使回归模型中的自变量均保证具有统计学意义。自变量X7(病理类型)也未能进入方程,不能因此认为其与肾细胞癌淋巴结转移一定无关,如果增加样本含量,可能会出现有统计学意义的结果。

    表3 肾细胞癌淋巴结转移影响因素的Logistic回归多因素分析(n163, α0.10)

    2.3 概率模型 由多因素逐步回归分析结果,可得出肾细胞癌临床病理因素与淋巴结转移关系的概率模型,LogitP-8.199+0.603X3+1.840X6+0.976X8, 其中P值越接近于1,患者发生转移的可能性越大;P值越接近于0,患者发生转移的可能性越小。整个模型经χ2检验有统计学意义(χ281.601,P0.000)。

    2.4 应用概率模型的回代分析 为检验该模型的实用性,163例RCC对概率模型进行回代分析,以预测概率0.500为判别函数的分界点 ......

您现在查看是摘要介绍页,详见PDF附件