基于PubMed的心肌炎生物标志物双向聚类分析(1)
【摘要】 目的:探索分析近年来心肌炎生物标志物的研究热点。方法:选用PubMed数据库,检索式为“Biomarkers”[Mesh] AND “Myocarditis”[Mesh],检索结果采用书目信息挖掘系统(BICOMS)软件进行文献计量学分析,使用gCLUTO 2.1软件进行双向聚类及可视化分析。结果:共检索到文献592篇,统计分析后划分为以下6个主题:规范使用生物计算机语言能更好的在生物医学数据库中检索到目标文献;4-1BB、CD11b(+)单核细胞、CCR1拮抗剂通过激活T细胞的免疫应答对抗心肌炎;PubTator软件有助于检索专业医学数据;IL-33、IL-22对由柯萨奇病毒所致的病毒性心肌炎有保护作用;髓间充脂干细胞、联合治疗CTLA4Ig与ICOSIg、CCR5三者均能对抗自身免疫性心肌炎;利用核磁成像对MINCOA及心肌炎患者诊断与治疗。结论:双向聚类分析方法很好地体现了当前心肌炎生物标志物领域的研究热点与发展趋势。
【关键词】 心肌炎; 生物标志物; 双向聚类分析
Bidirectional Clustering Analysis of Myocarditis Biomarkers Based on PubMed/CHEN Kaiming.//Medical Innovation of China,2018,15(03):143-145
【Abstract】 Objective:To explore and analyze the hotspots of myocarditis biomarkers in recent years.Method:The PubMed database was selected and retrieved as “Biomarkers”[Mesh] AND “Myocarditis”[Mesh].The retrieval results were analyzed by bibliographic metrology using bibliographic information mining system (BICOMS),and bidirectional clustering and visual analysis by gCLUTO 2.1 software.Result:A total of 592 literatures were retrieved,and the statistical analysis was divided into the following six topics:standardized use of biological computer language to better retrieve the target literature in the biomedical database;4-1BB,CD11b(+) monocytes and CCR1 antagonism antagonistic myocarditis by activating T-cell immune response;PubTator software help to retrieve professional medical data;IL-33 and IL-22 have protective effects on viral myocarditis caused by Coxsackie virus;mesenchymal stem cell,combined treatment of CTLA4Ig and ICOSIg,CCR5 can fight against autoimmune myocarditis;using NMR imaging for diagnosis and treatment of MINCOA with myocarditis patients.Conclusion:The bidirectional clustering analysis method well reflects the current research hotspot and development trend of myocarditis biomarkers.
【Key words】 Myocarditis; Biomarkers; Bidirectional clustering analysis
First-author’s address:Affiliated Central Hospital of Shenyang Medical College,Shenyang 110024,China
doi:10.3969/j.issn.1674-4985.2018.03.039
心肌炎是一種与心脏功能障碍有关的心肌炎性疾病[1]。双向聚类分析是一种探索性的分析方法,针对大型数据集,并应用于众多领域[2]。gCLUTO 2.1是一个软件包[3],用于分析数据集低维与高维的特征。通过了解心肌炎生物标志物的发展与研究历程,更新相关观念,借鉴外国先进的模式与理念,为我国心肌炎的研究提供启示。
1 材料与方法
1.1 检索方法 基于PubMed数据库,检索式为“Biomarkers”[Mesh] AND “Myocarditis”[Mesh],检索时间为2017年7月31日。
1.2 分析方法 采用书目信息挖掘系统软件对检索结果进行整理,并通过gCLUTO 2.1软件进行双向聚类分析,形成可视化矩阵图(高频主题词代表文献共现聚类视图)与可视化曲面图(PMID共现聚类视图,山峰图)。
2 结果
统计结果进行拉伸处理,得到聚类结果,纵观聚类结果图,将高频主题词聚集为6个集群(图1)。可视化曲面图(图2)反应各聚类的整体特征与效果,山峰高度与聚类内部相似性成正比,山峰体积与聚类元素个数成正比,山峰颜色与集群内部偏差成反比,颜色越深偏差越小。, http://www.100md.com(陈凯明)
【关键词】 心肌炎; 生物标志物; 双向聚类分析
Bidirectional Clustering Analysis of Myocarditis Biomarkers Based on PubMed/CHEN Kaiming.//Medical Innovation of China,2018,15(03):143-145
【Abstract】 Objective:To explore and analyze the hotspots of myocarditis biomarkers in recent years.Method:The PubMed database was selected and retrieved as “Biomarkers”[Mesh] AND “Myocarditis”[Mesh].The retrieval results were analyzed by bibliographic metrology using bibliographic information mining system (BICOMS),and bidirectional clustering and visual analysis by gCLUTO 2.1 software.Result:A total of 592 literatures were retrieved,and the statistical analysis was divided into the following six topics:standardized use of biological computer language to better retrieve the target literature in the biomedical database;4-1BB,CD11b(+) monocytes and CCR1 antagonism antagonistic myocarditis by activating T-cell immune response;PubTator software help to retrieve professional medical data;IL-33 and IL-22 have protective effects on viral myocarditis caused by Coxsackie virus;mesenchymal stem cell,combined treatment of CTLA4Ig and ICOSIg,CCR5 can fight against autoimmune myocarditis;using NMR imaging for diagnosis and treatment of MINCOA with myocarditis patients.Conclusion:The bidirectional clustering analysis method well reflects the current research hotspot and development trend of myocarditis biomarkers.
【Key words】 Myocarditis; Biomarkers; Bidirectional clustering analysis
First-author’s address:Affiliated Central Hospital of Shenyang Medical College,Shenyang 110024,China
doi:10.3969/j.issn.1674-4985.2018.03.039
心肌炎是一種与心脏功能障碍有关的心肌炎性疾病[1]。双向聚类分析是一种探索性的分析方法,针对大型数据集,并应用于众多领域[2]。gCLUTO 2.1是一个软件包[3],用于分析数据集低维与高维的特征。通过了解心肌炎生物标志物的发展与研究历程,更新相关观念,借鉴外国先进的模式与理念,为我国心肌炎的研究提供启示。
1 材料与方法
1.1 检索方法 基于PubMed数据库,检索式为“Biomarkers”[Mesh] AND “Myocarditis”[Mesh],检索时间为2017年7月31日。
1.2 分析方法 采用书目信息挖掘系统软件对检索结果进行整理,并通过gCLUTO 2.1软件进行双向聚类分析,形成可视化矩阵图(高频主题词代表文献共现聚类视图)与可视化曲面图(PMID共现聚类视图,山峰图)。
2 结果
统计结果进行拉伸处理,得到聚类结果,纵观聚类结果图,将高频主题词聚集为6个集群(图1)。可视化曲面图(图2)反应各聚类的整体特征与效果,山峰高度与聚类内部相似性成正比,山峰体积与聚类元素个数成正比,山峰颜色与集群内部偏差成反比,颜色越深偏差越小。, http://www.100md.com(陈凯明)