Artificial means for restoring vision
http://www.100md.com
《英国医生杂志》
1 Academic Department of Ophthalmology, University of Nottingham, Eye, Ear, Nose, and Throat Centre, Queen's Medical Centre, Nottingham NG7 2UH
Correspondence to: W M Amoaku wma@nottingham.ac.uk
Introduction
We carried out a comprehensive search through Medline and PubMed using the terms "age related maculopathy", "visual prosthesis", "retinitis pigmentosa", "retina", and "eye". We also searched for the latest developments in artificial vision through the website of the Association for Research in Vision and Ophthalmology.
A brief history of visual prostheses
In the 1960s investigators implanted electrodes on the visual cortex (epicortical implants) of human patients through a burr hole.7 8 11 The patients reported seeing spots of light or "phosphenes."7 12 These early studies were limited by problems such as flickering phosphenes and interactions between phosphenes. The excessive electrode currents also irritated the meninges, causing pain around the implant.11 Later modifications to the implants enabled them to be embedded in the visual cortex (intracortical implants), and thus smaller electrodes and lower electrical currents could be used. These advances led to localised intracortical stimulation with less pain.7 12 13 Visual prostheses have the disadvantages of the surgical complications of any artificial implant, and complex mapping of the visual cortex is required to achieve visual perception.11 Despite these limitations, patients with implants can be trained to navigate around objects, perform simple tasks, and identify large letters.14
Intracortical implants have two main advantages over other methods for restoring vision. Firstly, the electrodes are protected by the skull. Secondly, the technique bypasses disease proximal to the primary visual cortex, making it potentially useful for treating diseases of the optic nerve and retina.
Optic nerve stimulation
VanNewkirk MR, Nanjan MB, Wang JJ, Mitchell P, Taylor HR, McCarty CA. The prevalence of age-related maculopathy: the visual impairment project. Ophthalmology 2000;107: 1593-600.
Evans J, Wormald R. Is the incidence of registrable age-related macular degeneration increasing? Br J Ophthalmol 1996;80: 9-14.
Boughman JA, Conneally PM, Nance WE. Population genetic studies of retinitis pigmentosa. Am J Hum Genet 1980;32: 223-35.
Klein ML, Francis PJ. Genetics of age-related macular degeneration. Ophthalmol Clin North Am 2003;16: 567-74.
Hunt DW, Margaron P. Status of therapies in development for the treatment of age-related macular degeneration. IDrugs 2003;6: 464-9.
Uhlig CE, Tanen S, Benner FP, Gerding H. Electrical stimulation of the visual system. From empirical approach to visual prostheses. Ophthalmologe 2001;98: 1089-96.
Lakhanpal RR, Yanai D, Weiland JD, Fujii GY, Caffey S, Greenberg R, et al. Advances in the development of visual prostheses. Curr Opin Ophthalmol 2003;14: 122-7.
Margalit E, Maia M, Weiland JD, Greenberg RJ, Fujii GY, Torres G, et al. Retinal prosthesis for the blind. Surv Ophthalmol 2002;47: 335-56.
Dawson WW, Radtke ND. The electrical stimulation of the retina by indwelling electrodes. Invest Ophthalmol Vis Sci 1977;16: 249-52.
Zrenner E, Stett A, Weiss S Aramant RB, Guenther E, Miliczek KD, et al. Can subretinal microphotodiodes successfully replace degenerated photoreceptors? Vision Res 1999;39: 2555-67.
Humayun MS. Intraocular retinal prosthesis. Trans Am Ophthalmol Soc 2001;99: 271-300.
Gerding H. Development of microelectronic visual implants. In: Alberti WE, Richard G, Sagerman RH, eds. Age-related macular degeneration: current treatment concepts. New York: Springer-Verlag, 2001: 55.
Schmidt EM, Bak MJ, Hambrecht FT, Kufta CV, O'Rourke DK, Vallabhanath P. Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain 1996;119: 507-22
Dobelle WH. Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO J 2000;46: 3-9.
Veraart C, Raftopoulos C, Mortimer JT, Delbeke J, Pins D, Michaux G, et al. Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res 1998;813: 181-6.
Chow AY, Chow VY, Packo KH, Pollack JS, Peyman GA, Schuchard R. The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Ophthalmol 2004;122: 460-9.
Zrenner E. Will retinal implants restore vision? Science 2002;295: 1022.
Sippy BD, Yin H, Ball SL, Phillips MJ, Blum M, Chow AT, et al. Investigative Ophthalmology and Visual Science. www.arvo.org, 2003;e-abstract Nos 5062, 5063, 5075, 5071 (accessed May 2004).
Grossniklaus HE. Will retinal implants restore vision? Am J Ophthalmol 2002;133: 865-6.
Humayun MS, de Juan E, Weiland JD, Dagnelie G, Katona S, Greenberg R, et al. Pattern electrical stimulation of the human retina. Vision Res 1999;39: 2569-76.
Humayun MS, Weiland JD, Fujii GY, Greenberg R, Williamson R, Little J, et al. Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res 2003;43: 2573-81.
Majji AB, Humayun MS, Weiland JD, Suzuki S, D'Anna SA, de Juan E. Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs. Invest Ophthalmol Vis Sci 1999;40: 2073-81.
Weiland JD, Fujii GY, Mech BV, Greenberg RJ, Guven D, Mahadevappa M, et al. Chronic electrical stimulation of the retina in RCD1 and normal dog. Invest Ophthalmol Vis Sci 2003;e-abstract 5081/B740 (accessed May 2004).
Ikuno Y, Choi JS, Nakauchi K, Sakaguchi H, Kamei M, Hirakata A, et al. Histologic analysis of a retinal prosthesis implant in an animal model. Invest Ophthalmol Vis Sci 2003;e-abstract 5050/B709 (accessed May 2004).
Humayun MS, de Juan E, Dagnelie G, Greenberg RJ, Propst RH, Phillips DH. Visual perception elicited by electrical stimulation of retina in blind humans. Arch Ophthalmol 1996;114: 40-6.
Humayun MS, Weiland JD, Fujii GY, Greenberg R, Williamson R, Little J, et al. Chronically implanted intraocular retinal prosthesis in three blind subjects. Invest Ophthalmol Vis Sci 2004;e-abstract 3397 (accessed May 2004).
Rizzo JF, Wyatt J, Humayun M, de Juan E, Liu W, Chow A, et al. Retinal prosthesis: an encouraging first decade with major challenges ahead. Ophthalmology 2001;108: 13-4.
Guven D, Fujii G, Maghribi MN, Okanden M, Krulevitch P, Wessendorf K, et al. High density electrode count retinal stimulating arrays. Invest Ophthalmol Vis Sci 2003;e-abstract 5060/B719 (accessed May 2004).
Palanker DV, Vankov A, Hui P, Fishman HA, Marmor MF, Blumenkranz MD, et al. Can a self-powered retinal prosthesis support 100,000 pixels in the macula? Invest Ophthalmol Vis Sci 2003;e-abstract 5067/B726 (accessed May 2004).
Liu W, Singh P, Humayun M, Weiland J. New micro-stimulator for high resolution retinal prosthesis. Invest Ophthalmol Vis Sci 2003;e-abstract 5088/B747 (accessed May 2004).
Kanda H, Sawai H, Morimoto T, Fujikado T, Tano Y, Fukuda Y, et al. Suprachoroidal transretinal stimulation (STS) can elicit localised evoked responses from the superior colliculus in normal and RCS rats. Invest Ophthalmol Vis Sci 2003;e-abstract 5053/B712 (accessed May 2004).
Nakauchi K, Fujikado T, Kanda H, Ikuno Y, Sakaguchi H, Karnwei M, et al. Transretinal electrical stimulation by intrascleral multichannel electrode in rabbit eyes. Invest Ophthalmol Vis Sci 2003;e-abstract 5061/B720 (accessed May 2004).
Wang K, Loftus D, Leng T, Harris JS, Fishman H. Carbon nanotubes as microelectrodes for a retinal prosthesis. Invest Ophthalmol Vis Sci 2003;e-abstract 5054/B713 (accessed May 2004).
Matsuo T. A simple method for screening photoelectric dyes towards the use for retina prosthesis. Invest Ophthalmol Vis Sci 2003;e-abstract 5049/B708 (accessed May 2004).
Peterman MC, Bloom DM, Lee C, Bent SF, Marmor MF, Blumenkranz MS, et al. Localized neurotransmitter release for use in a prototype retinal interface. Invest Ophthalmol Vis Sci 2003;44: 3144-9.
Peterman MC, Noolandi J, Blumenkranz MS, Fishman HA. Localized chemical release from an artificial synapse chip. Proc Natl Acad Sci USA 2004;101: 9951-4.
Hamill MB, Kuppermann BD, Fine IH, Lane SS. The implantable miniature telescope: 12-month results of the US IMT 001. Clinical trial in patients with stable age-related macular degeneration. Invest Ophthalmol Vis Sci 2003;e-abstract 4209 (accessed May 2004).(Parwez Hossain, clinical lecturer1, Ian )
Correspondence to: W M Amoaku wma@nottingham.ac.uk
Introduction
We carried out a comprehensive search through Medline and PubMed using the terms "age related maculopathy", "visual prosthesis", "retinitis pigmentosa", "retina", and "eye". We also searched for the latest developments in artificial vision through the website of the Association for Research in Vision and Ophthalmology.
A brief history of visual prostheses
In the 1960s investigators implanted electrodes on the visual cortex (epicortical implants) of human patients through a burr hole.7 8 11 The patients reported seeing spots of light or "phosphenes."7 12 These early studies were limited by problems such as flickering phosphenes and interactions between phosphenes. The excessive electrode currents also irritated the meninges, causing pain around the implant.11 Later modifications to the implants enabled them to be embedded in the visual cortex (intracortical implants), and thus smaller electrodes and lower electrical currents could be used. These advances led to localised intracortical stimulation with less pain.7 12 13 Visual prostheses have the disadvantages of the surgical complications of any artificial implant, and complex mapping of the visual cortex is required to achieve visual perception.11 Despite these limitations, patients with implants can be trained to navigate around objects, perform simple tasks, and identify large letters.14
Intracortical implants have two main advantages over other methods for restoring vision. Firstly, the electrodes are protected by the skull. Secondly, the technique bypasses disease proximal to the primary visual cortex, making it potentially useful for treating diseases of the optic nerve and retina.
Optic nerve stimulation
VanNewkirk MR, Nanjan MB, Wang JJ, Mitchell P, Taylor HR, McCarty CA. The prevalence of age-related maculopathy: the visual impairment project. Ophthalmology 2000;107: 1593-600.
Evans J, Wormald R. Is the incidence of registrable age-related macular degeneration increasing? Br J Ophthalmol 1996;80: 9-14.
Boughman JA, Conneally PM, Nance WE. Population genetic studies of retinitis pigmentosa. Am J Hum Genet 1980;32: 223-35.
Klein ML, Francis PJ. Genetics of age-related macular degeneration. Ophthalmol Clin North Am 2003;16: 567-74.
Hunt DW, Margaron P. Status of therapies in development for the treatment of age-related macular degeneration. IDrugs 2003;6: 464-9.
Uhlig CE, Tanen S, Benner FP, Gerding H. Electrical stimulation of the visual system. From empirical approach to visual prostheses. Ophthalmologe 2001;98: 1089-96.
Lakhanpal RR, Yanai D, Weiland JD, Fujii GY, Caffey S, Greenberg R, et al. Advances in the development of visual prostheses. Curr Opin Ophthalmol 2003;14: 122-7.
Margalit E, Maia M, Weiland JD, Greenberg RJ, Fujii GY, Torres G, et al. Retinal prosthesis for the blind. Surv Ophthalmol 2002;47: 335-56.
Dawson WW, Radtke ND. The electrical stimulation of the retina by indwelling electrodes. Invest Ophthalmol Vis Sci 1977;16: 249-52.
Zrenner E, Stett A, Weiss S Aramant RB, Guenther E, Miliczek KD, et al. Can subretinal microphotodiodes successfully replace degenerated photoreceptors? Vision Res 1999;39: 2555-67.
Humayun MS. Intraocular retinal prosthesis. Trans Am Ophthalmol Soc 2001;99: 271-300.
Gerding H. Development of microelectronic visual implants. In: Alberti WE, Richard G, Sagerman RH, eds. Age-related macular degeneration: current treatment concepts. New York: Springer-Verlag, 2001: 55.
Schmidt EM, Bak MJ, Hambrecht FT, Kufta CV, O'Rourke DK, Vallabhanath P. Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain 1996;119: 507-22
Dobelle WH. Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO J 2000;46: 3-9.
Veraart C, Raftopoulos C, Mortimer JT, Delbeke J, Pins D, Michaux G, et al. Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res 1998;813: 181-6.
Chow AY, Chow VY, Packo KH, Pollack JS, Peyman GA, Schuchard R. The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Ophthalmol 2004;122: 460-9.
Zrenner E. Will retinal implants restore vision? Science 2002;295: 1022.
Sippy BD, Yin H, Ball SL, Phillips MJ, Blum M, Chow AT, et al. Investigative Ophthalmology and Visual Science. www.arvo.org, 2003;e-abstract Nos 5062, 5063, 5075, 5071 (accessed May 2004).
Grossniklaus HE. Will retinal implants restore vision? Am J Ophthalmol 2002;133: 865-6.
Humayun MS, de Juan E, Weiland JD, Dagnelie G, Katona S, Greenberg R, et al. Pattern electrical stimulation of the human retina. Vision Res 1999;39: 2569-76.
Humayun MS, Weiland JD, Fujii GY, Greenberg R, Williamson R, Little J, et al. Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res 2003;43: 2573-81.
Majji AB, Humayun MS, Weiland JD, Suzuki S, D'Anna SA, de Juan E. Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs. Invest Ophthalmol Vis Sci 1999;40: 2073-81.
Weiland JD, Fujii GY, Mech BV, Greenberg RJ, Guven D, Mahadevappa M, et al. Chronic electrical stimulation of the retina in RCD1 and normal dog. Invest Ophthalmol Vis Sci 2003;e-abstract 5081/B740 (accessed May 2004).
Ikuno Y, Choi JS, Nakauchi K, Sakaguchi H, Kamei M, Hirakata A, et al. Histologic analysis of a retinal prosthesis implant in an animal model. Invest Ophthalmol Vis Sci 2003;e-abstract 5050/B709 (accessed May 2004).
Humayun MS, de Juan E, Dagnelie G, Greenberg RJ, Propst RH, Phillips DH. Visual perception elicited by electrical stimulation of retina in blind humans. Arch Ophthalmol 1996;114: 40-6.
Humayun MS, Weiland JD, Fujii GY, Greenberg R, Williamson R, Little J, et al. Chronically implanted intraocular retinal prosthesis in three blind subjects. Invest Ophthalmol Vis Sci 2004;e-abstract 3397 (accessed May 2004).
Rizzo JF, Wyatt J, Humayun M, de Juan E, Liu W, Chow A, et al. Retinal prosthesis: an encouraging first decade with major challenges ahead. Ophthalmology 2001;108: 13-4.
Guven D, Fujii G, Maghribi MN, Okanden M, Krulevitch P, Wessendorf K, et al. High density electrode count retinal stimulating arrays. Invest Ophthalmol Vis Sci 2003;e-abstract 5060/B719 (accessed May 2004).
Palanker DV, Vankov A, Hui P, Fishman HA, Marmor MF, Blumenkranz MD, et al. Can a self-powered retinal prosthesis support 100,000 pixels in the macula? Invest Ophthalmol Vis Sci 2003;e-abstract 5067/B726 (accessed May 2004).
Liu W, Singh P, Humayun M, Weiland J. New micro-stimulator for high resolution retinal prosthesis. Invest Ophthalmol Vis Sci 2003;e-abstract 5088/B747 (accessed May 2004).
Kanda H, Sawai H, Morimoto T, Fujikado T, Tano Y, Fukuda Y, et al. Suprachoroidal transretinal stimulation (STS) can elicit localised evoked responses from the superior colliculus in normal and RCS rats. Invest Ophthalmol Vis Sci 2003;e-abstract 5053/B712 (accessed May 2004).
Nakauchi K, Fujikado T, Kanda H, Ikuno Y, Sakaguchi H, Karnwei M, et al. Transretinal electrical stimulation by intrascleral multichannel electrode in rabbit eyes. Invest Ophthalmol Vis Sci 2003;e-abstract 5061/B720 (accessed May 2004).
Wang K, Loftus D, Leng T, Harris JS, Fishman H. Carbon nanotubes as microelectrodes for a retinal prosthesis. Invest Ophthalmol Vis Sci 2003;e-abstract 5054/B713 (accessed May 2004).
Matsuo T. A simple method for screening photoelectric dyes towards the use for retina prosthesis. Invest Ophthalmol Vis Sci 2003;e-abstract 5049/B708 (accessed May 2004).
Peterman MC, Bloom DM, Lee C, Bent SF, Marmor MF, Blumenkranz MS, et al. Localized neurotransmitter release for use in a prototype retinal interface. Invest Ophthalmol Vis Sci 2003;44: 3144-9.
Peterman MC, Noolandi J, Blumenkranz MS, Fishman HA. Localized chemical release from an artificial synapse chip. Proc Natl Acad Sci USA 2004;101: 9951-4.
Hamill MB, Kuppermann BD, Fine IH, Lane SS. The implantable miniature telescope: 12-month results of the US IMT 001. Clinical trial in patients with stable age-related macular degeneration. Invest Ophthalmol Vis Sci 2003;e-abstract 4209 (accessed May 2004).(Parwez Hossain, clinical lecturer1, Ian )