Relative Contributions of Measles Virus Hemaggluti
http://www.100md.com
病菌学杂志 2005年第17期
Department of Virology, Erasmus MC, Rotterdam, The Netherlands
ABSTRACT
The relative contribution of measles virus hemagglutinin (H)- or fusion protein (F)-specific antibodies to virus neutralization (VN) has not been demonstrated. We have depleted these specific antibodies from sera collected from young adults, who had been vaccinated during childhood, by prolonged incubation with viable transfected human melanoma cells expressing H or F. Simultaneous depletion of antibodies of both specificities completely abrogated VN activity. Depletion of F-specific antibodies only had a minimal effect, whereas removal of H-specific antibodies resulted in almost complete reduction of VN activity. These results demonstrate that measles virus neutralizing antibodies are mainly directed to the H protein.
TEXT
Measles virus (MV) is a member of the family Paramyxoviridae, genus Morbillivirus. It is transmitted via the respiratory route and has an incubation phase of 9 to 19 days (7). Whereas the cellular immune response is thought to be crucial for clearance of infection, virus-neutralizing (VN) antibodies are an important correlate of protection (4). VN antibody levels of 0.1 to 0.2 international units (IU) per ml, equivalent to titers of approximately 1:8 to 1:16, have been shown to protect from disease (2, 10) and interfere with the efficacy of live-attenuated measles vaccines (6, 14). VN antibodies are exclusively directed to the hemagglutinin (H) or fusion protein (F) and mostly recognize conformational epitopes (1). It has been suggested that H-specific antibodies are the major contributors to VN activity (1), but this has never formally been demonstrated.
We have recently developed a fluorescence-activated cell scanner (FACS)-measured immunofluorescence assay for the detection of MV H- and F-specific antibodies, using the stably transfected human melanoma cells Mel-JuSo/MV-H or Mel-JuSo/MV-F as target cells (3), and used this assay for the detection of specific antibodies in humans and experimentally infected animals (5, 8, 12). Here, we have used the same cells to deplete H- or F-specific antibodies from polyclonal sera. Interactions between antibody and antigen result in an equilibrium between bound and unbound antibody. For depletion of unbound antibodies the antigen/antibody complexes should be removed from the system. We achieved this by culturing H- or F-expressing cells in medium supplemented with 10% of the test serum.
From our serum bank we selected 160 samples collected in 2002 or 2003 from healthy subjects born in the period 1980 to 1985. Measles vaccination was introduced in The Netherlands in 1976 and was replaced by vaccination with measles-mumps-rubella in 1987 (15). The subjects included in this study therefore most likely received a monovalent measles vaccination at the age of 14 months and a measles-mumps-rubella vaccination at the age of 9 years. Measles has become a rare disease in The Netherlands, with sporadic outbreaks in communities with low vaccination coverage. Therefore, the majority of these subjects was probably never exposed to wild-type MV. Since samples with low MV-specific antibody levels were considered of limited use for this study, the sera were first tested in an in-house MV-specific immunoglobulin G (IgG) enzyme-linked immunosorbent assay. The 64 samples (40%) with the lowest signals in this test were excluded from further analysis. The remaining 96 samples were heat inactivated (30 min, 56°C) and tested anonymously.
Mel-JuSo cells expressing the MV H or F protein or the untransfected parental cell line (Mel-JuSo/wt) were seeded in 96-well flat-bottom plates in RPMI 1640 medium supplemented with antibiotics and 10% fetal bovine serum (FBS). When monolayers were nearly confluent, supernatants were replaced with medium containing 10% of the different test sera (150 μl/well). Supernatants were collected after 0, 1, 2, or 3 days of culture for 10 different samples and were tested for the presence of H- or F-specific IgG as previously described (3) after 1:10 dilution in phosphate-buffered saline (PBS) supplemented with 3% FBS. After 3 days of culture on H-expressing cells, H-specific IgG antibodies were efficiently depleted while F-specific antibody levels remained unaffected (Fig. 1). The inverse pattern was observed for sera incubated on F-expressing cells, while incubation on the untransfected cell line left both H- and F-specific antibody levels virtually unchanged (Fig. 1).
Next, H- and/or F-specific antibodies were removed sequentially and VN activity of the resulting samples was determined. Mel-JuSo cells were grown in medium supplemented with 10% of the test serum for a period of 3 days (round 1). Supernatants were then transferred to freshly seeded Mel-JuSo cells and cultured for another three days (round 2). To make certain that all samples had a comparable culture history, samples from which no or only a single specific antibody was depleted were also cultured on untransfected Mel-JuSo cells. Four conditions were used: condition 1 (no depletion), Mel-JuSo/wt (round 1)Mel-JuSo/wt (round 2); condition 2 (H depletion), Mel-JuSo/MV-H (round 1)Mel-JuSo/wt (round 2); condition 3 (F depletion), Mel-JuSo/MV-F (round 1)Mel-JuSo/wt (round 2); and condition 4 (H and F depletion), Mel-JuSo/MV-H (round 1)Mel-JuSo/MV-F (round 2). All assays were also performed on the original sera (referred to as condition 0).
As shown in Fig. 2 and 3, this protocol was successful in depleting H- and/or F-specific IgG from the polyclonal test sera. Virus neutralization was measured by endpoint titration as previously described (12) and expressed in international units (IU) per milliliter, using the international reference serum for measles (serum 66/202; 5 IU per ml; World Health Organization International Laboratory for Biological Standards, National Institute for Biological Standards and Control, Hertfordshire, United Kingdom). Effective depletion was confirmed by showing that depletion of both H- and F-specific antibodies resulted in complete abrogation of the capacity to neutralize MV strain Edmonston (Fig. 4). Depletion of F-specific antibodies only had a minimal effect on the VN titers of the serum, whereas depletion of H-specific antibodies resulted in an almost complete reduction of VN activity (Fig. 4).
We hypothesize that the depletion of specific antibodies in this protocol is the result of internalization and degradation of bound antibodies by the H- or F-expressing cells. Since new recombinant protein is continuously produced, expressed on the cell surface, and available for binding antibody, this eventually depletes unbound antibodies from the sample without affecting antibodies with other specificities. Protein-specific antibodies in sera with VN antibody levels up to 10 IU/ml were effectively depleted (Fig. 4), demonstrating that the depletion assay had a dynamic range with a relatively high upper limit.
The effectiveness of this approach would be expected to depend on the avidity of the serum. This was confirmed by preliminary depletion studies using a limited number of early-convalescent-phase sera collected from patients infected with wild-type MV from which H- or F-specific antibodies could not effectively be depleted (results not shown). However, in the present study all sera were collected several years after vaccination and thus may be expected to have contained only high-avidity antibodies. Another prerequisite is the absence of toxicity: a few (3 out of 96) serum samples in our study did not accommodate growth of the Mel-JuSo cells, resulting in incomplete depletion (these samples were excluded from the final analysis).
Genetic variability of the virus under investigation may also play an important role. Although MV is a monotypic virus, some genetic variability exists, with the highest level in the H gene (16). In the present study we have used a homologous system: both the vaccine and the genes used for transfecting the cells belonged to clade A. It has been suggested that genetic variability of wild-type MV strains could in part be due to positive selection of viruses less susceptible to neutralization by vaccination-induced antibodies (9, 11). Therefore, depletion of H- and F-specific antibodies induced by infection might not completely remove the capacity to neutralize the wild-type virus. To test this hypothesis we are currently collecting late-convalescent-phase serum samples from subjects infected with recent wild-type strains.
Finally, wild-type MV strains use the signaling lymphocyte activation molecule (SLAM; CD150) as a cellular receptor, while MV-Edmonston and MV vaccine strains can use both SLAM and CD46 (13). The neutralization assay used in the present study is based on MV Edmonston infection of Vero cells, which is completely dependent on CD46 as a receptor. It would therefore be interesting to study the effect of depletion of H- and F-specific antibodies induced by infection on neutralization of wild-type MV strains in SLAM-expressing cells.
In conclusion, we have depleted H- and/or F-specific antibodies from polyclonal sera collected from young adults more than 10 years after measles vaccination. Successful depletion was demonstrated by the loss of protein-specific IgG fluorescence signals and by the complete abrogation of VN activity in samples from which both H- and F-specific antibodies were depleted. The results described indicate that H-specific antibodies are the main correlate of vaccination-induced MV neutralization. Studies on monitoring vaccination efficacy in relation to newly emerging MV genotypes should therefore largely focus on the H protein, which could ultimately have consequences for the design of new generations of measles vaccines. Finally, the depletion assay used may also be of value for determining the role of protein-specific antibody responses in other virus infections.
ACKNOWLEDGMENTS
We thank Ann Vossen and Hans Kruining for their contributions to this study.
REFERENCES
Bouche, F. B., O. T. Ertl, and C. P. Muller. 2002. Neutralizing B cell response in measles. Viral Immunol. 15:451-471.
Chen, R. T., L. E. Markowitz, P. Albrecht, J. A. Stewart, L. M. Mofenson, S. R. Preblud, and W. A. Orenstein. 1990. Measles antibody: reevaluation of protective titers. J. Infect. Dis. 162:1036-1042.
De Swart, R. L., H. W. Vos, F. G. C. M. UytdeHaag, A. D. M. E. Osterhaus, and R. S. Van Binnendijk. 1998. Measles virus fusion protein- and hemagglutinin-transfected cell lines are a sensitive tool for the detection of specific antibodies by a FACS-measured immunofluorescence assay. J. Virol. Methods 71:35-44.
Duke, T., and C. S. Mgone. 2003. Measles: not just another viral exanthem. Lancet 361:763-773.
El Mubarak, H. S., S. A. Ibrahim, H. W. Vos, M. M. Mukhtar, O. A. Mustafa, T. F. Wild, A. D. M. E. Osterhaus, and R. L. De Swart. 2004. Measles virus protein-specific IgM, IgA and IgG subclass responses during the acute and convalescent phase of infection. J. Med. Virol. 72:290-298.
Garly, M.-L., and P. Aaby. 2003. The challenge of improving the efficacy of measles vaccine. Acta Trop. 85:1-17.
Griffin, D. E. 2001. Measles virus, p. 1401-1441. In D. M. Knipe and P. M. Howley (ed.), Fields virology. Lippincott Williams & Wilkins, Philadelphia, Pa.
Hartter, H. K., R. L. De Swart, F. Hanses, H. W. Vos, F. B. Bouche, A. D. M. E. Osterhaus, F. Schneider, and C. P. Muller. 2000. Evaluation of different measles IgG assays based on recombinant proteins using a panel of low-titre sera. J. Virol. Methods 84:191-200.
Klingele, M., H. K. Hartter, F. Adu, W. Ammerlaan, W. Ikusika, and C. P. Muller. 2000. Resistance of recent measles virus wild-type isolates to antibody-mediated neutralization by vaccinees with antibody. J. Med. Virol. 62:91-98.
Samb, B., P. Aaby, H. C. Whittle, A. M. Coll Seck, S. Rahman, J. Bennett, L. Markowitz, and F. Simondon. 1995. Serologic status and measles attack rates among vaccinated and unvaccinated children in rural Senegal. Pediatr. Infect. Dis. J. 14:203-209.
Santibanez, S., S. Niewiesk, A. Heider, J. Schneider-Schaulies, G. A. M. Berbers, A. Zimmermann, A. Halenius, A. Wolbert, I. Deitemeier, A. Tischer, and H. Hengel. 2005. Probing neutralizing-antibody responses against emerging measles viruses (MVs): immune selection of MV by H protein-specific antibodies J. Gen. Virol. 86:365-374.
Stittelaar, K. J., L. S. Wyatt, R. L. De Swart, H. W. Vos, J. Groen, G. Van Amerongen, R. S. Van Binnendijk, S. Rozenblatt, B. Moss, and A. D. M. E. Osterhaus. 2000. Protective immunity in macaques vaccinated with a modified vaccinia virus Ankara-based measles vaccine in the presence of passively acquired antibodies. J. Virol. 74:4236-4243.
Tatsuo, H., N. Ono, K. Tanaka, and Y. Yanagi. 2000. SLAM (CDw150) is a cellular receptor for measles virus. Nature 406:893-897.
Van Binnendijk, R. S., M. C. M. Poelen, G. Van Amerongen, P. De Vries, and A. D. M. E. Osterhaus. 1997. Protective immunity in macaques vaccinated with live attenuated, recombinant and subunit measles vaccines in the presence of passively acquired antibodies. J. Infect. Dis. 175:524-534.
Van den Hof, S., G. A. M. Berbers, H. E. De Melker, and M. A. E. Conyn-van Spaendonck. 1999. Sero-epidemiology of measles antibodies in the Netherlands, a cross-sectional study in a national sample and in communities with low vaccination coverage. Vaccine 18:931-940.
World Health Organization. 2003. Update of the nomenclature for describing the genetic characteristics of wild-type measles viruses: new genotypes and reference strains. Wkly. Epidemiol. Rec. 78:229-232.(Rik L. de Swart, Selma Yü)
濠电姷鏁告慨鐑藉极閹间礁纾块柟瀵稿Т缁躲倝鏌﹀Ο渚&婵炲樊浜濋崑鎰版偣閸ヮ亜鐨烘い锔诲幖閳规垿鎮╃紒妯婚敪濠电偛鐪伴崐婵嬨€佸鑸电劶鐎广儱妫涢崢鍗炩攽閻愭潙鐏ョ€规洦鍓熷鎼佸Χ閸℃劒绨婚梺鍐叉惈閸燁偊宕㈤幘顔界厸閻忕偛澧介埥澶愭煃閽樺妯€鐎规洩绻濋幃娆忣啅椤斾粙鐛庨梻鍌欑閹碱偊藝椤愶箑鐤炬繝濠傚悩濞戙垹绀冩い鏃囧閹芥洖鈹戦悙鏉戠仸閼裤倝鏌$€n亪鍙勯柣鎿冨亰瀹曞爼濡搁敃鈧惃鎴︽⒑缁嬫鍎愰柟姝屽吹缁骞掗弬鍝勪壕闁挎繂绨肩花浠嬫煕閺冩挾鐣辨い顏勫暣婵″爼宕卞Δ鈧ḿ鎴︽⒑缁嬫鍎愰柟鐟版喘瀵鈽夐姀鈥充汗閻庤娲栧ú銏ゅ焵椤掍礁绗氬ǎ鍥э躬瀹曪絾寰勬繝鍌ゆ綋闂備礁鐤囬~澶愬垂閸喚鏆﹂柛顐f礀閻撴﹢鏌i幇闈涘濞存粍鐟╁铏规嫚閺屻儺鈧绱掗悩鑼х€规洘娲熷畷锟犳倷瀹ュ棛鈽夐柍钘夘樀婵偓闁绘﹢娼ф慨锔戒繆閻愵亜鈧牜鏁幒妞濆洭顢涢悙鏉戔偓鍫曟煥閺冨倻鎽傛繛鍫滅矙閺岋綁骞囬浣叉灆闂佺ǹ瀛╁褰掋€冮妷鈺傚€烽柛娆忣槸閺嬬姴顪冮妶鍐ㄧ仾婵☆偄鍟悾鐑藉Ω閳哄﹥鏅i梺缁樺姍濞佳囧箹缁嬪簱鏀介柣妯虹仛閺嗏晠鏌涚€n剙鈻堟鐐存崌椤㈡棃宕卞Δ鍐摌闂備浇顕栭崹濂告倶閹邦優娲敂閸曨収鍚呴梻浣虹帛閿氶柛姘e亾缂備焦顨呴ˇ闈涱潖濞差亜绠伴幖杈剧悼閻g敻姊洪悷鏉挎Щ妞ゆ垵顦悾鐑芥偨缁嬪潡鍞跺┑鐘焺娴滄繂螞閸愵喖鏋侀柛灞剧矌妞规娊鎮楅敐搴濈盎濠碘€炽偢濮婄粯鎷呴崨濠冨枑闂佺ǹ顑囬崑銈夌嵁閹版澘绠柦妯侯槼閹芥洟姊洪崫鍕偍闁搞劌缍婇悰顕€濮€閵堝棛鍘搁梺鎼炲劗閺呮稑鐡┑鐘殿暯閳ь剝灏欓惌娆撴煛瀹€瀣М濠殿喒鍋撻梺瀹犳〃閼宠埖绂掗埡鍐=闁稿本姘ㄥ瓭闂佹寧娲︽禍顏堟偘椤旂晫绡€闁搞儯鍔嶅▍銏ゆ⒑缂佹〒鍦焊濞嗘挻鍋柍褜鍓氭穱濠囨倷椤忓嫧鍋撻弽顓炵濡わ絽鍟壕濠氭煟閺傛寧鎲告い鈺冨厴閺岀喖骞嶉纰辨毉闂佹娊鏀遍崹鍧楀蓟濞戙垺鏅滈悹鍥ㄥ絻缁楀矂姊洪懡銈呮瀾闁革絾娼欑叅妞ゅ繐瀚€瑜旈弻娑㈠Ψ椤旀儳甯ュ┑鐐跺亹閸犳牕顫忓ú顏勭闁告瑥顦伴崕鎾绘⒑閻熸澘鏆辨慨姗堝閹广垹顫濋懜纰樻嫽婵炶揪绲介幊娆掋亹閹烘垵鐝樺銈嗗笒閸婂鎯屽▎鎾寸厵闁绘垶锕╁▓鏇㈡煕婵犲倻浠涢柕鍥у瀵剟宕归瑙勫瘱缂備胶鍋撻崕鎶藉Χ閹间礁钃熼柨鐔哄Т缁€鍐煏婵炲灝鍔楅柛瀣尵缁瑩骞愭惔銏㈡婵犵數濮烽弫鍛婃叏椤撱垹绠柛鎰靛枛缁€瀣煕椤垵浜為柡澶婄秺閺岋絾鎯旈姀鈺佹櫛闂佸摜濮甸悧鐘诲箖閵夆晜鍋傞幖杈剧稻濞堟儳鈹戦濮愪粶闁稿鎸搁埞鎴﹀焺閸愵亝鎲欏銈忛檮婵炲﹪寮诲☉銏犵闁哄鍨规禒鍝ョ磽娴h櫣甯涚紒瀣崌閸┾偓妞ゆ帊鑳堕埊鏇炵暆閿濆懏鍋ラ柟顖氭湰缁绘繈宕戦懞銉︻棃闁诡喒鏅犲畷锝嗗緞鐎n亝鐎鹃梻鍌欐祰濡椼劎娆㈤敓鐘查棷闁挎繂顦埀顑跨窔瀵挳濮€閳╁啯鐝曢梻浣藉Г閿氭い锔跨矙閸┾偓妞ゆ帊鑳堕埥澶愭煃鐟欏嫬鐏撮柡浣哥Ч瀹曠喖顢曢敍鍕礋婵犵數濮幏鍐川椤旂晫褰х紓鍌欑贰閸犳鎮烽敂鐐床婵犻潧顑呴悙濠囨煏婵炑冨暙缁犵増绻濋悽闈浶為柛銊у帶閳绘柨鈽夐姀鈩冩珖闂侀潧鐗嗛ˇ顖毿ч弻銉︾厸闁搞儮鏅涢弸鎴︽煕濞嗗繒绠婚柡宀嬬秮閹垽鎮℃惔婵嗘瀳婵犵妲呴崹顏堝磻閹剧粯鈷掑ù锝堝Г閵嗗啰绱掗埀顒佹媴閾忓湱鐓嬮梺鍦檸閸犳宕戦埡鍌滅瘈闂傚牊渚楅崕蹇曠磼閳ь剟宕橀埞澶哥盎濡炪倖鎸鹃崰搴ㄦ倶閿濆鐓欓悗鐢登归崢瀛樻叏婵犲嫮甯涢柟宄版噽缁數鈧綆浜濋悾浼存⒒娴e憡鎲稿┑顔炬暬楠炴垿宕惰閺嗭附绻濋棃娑冲姛闁汇倐鍋撴繝鐢靛仦閸ㄥ吋銇旈幖浣哥柧闁挎繂娲ㄧ壕浠嬫煕鐏炲墽鎳呴柛鏂跨Т閻f繈鏁愰崨顔间淮闂佺硶鏂傞崹钘夘嚕椤曗偓瀹曞ジ鎮㈤崫鍕闂傚倷鑳堕幊鎾活敋椤撱垹纾块柟瀵稿仧閻熻绻涢幋娆忕仾闁绘挻娲熼弻锟犲磼濮樺彉铏庨梺鍝勬4缂嶄線寮婚垾宕囨殕閻庯綆鍓涢惁鍫ユ倵鐟欏嫭绀冮悽顖涘浮閿濈偛鈹戠€e灚鏅i梺缁橈耿濞佳囩嵁閳ь剛绱撻崒姘偓鎼佸磹閻戣姤鍊块柨鏇炲€堕埀顒€鍟村畷銊ヮ潰閵堝懏鍠橀柡灞芥椤撳ジ宕ㄩ姘曞┑锛勫亼閸婃牜鏁幒妤€绐楁慨姗嗗厳缂傛岸鏌熼柇锕€鏋ょ痪鎯у悑閵囧嫰寮崶褌姹楃紓浣哄Т椤兘寮婚妸銉㈡斀闁割偅绻€濡叉劙姊烘潪鎵槮闁哥喐娼欓悾鐑藉箳閹搭厽鍍甸梺鍛婎殘閸嬬偤骞夐姀銈嗏拻濞达綀妫勯崥鐟扳攽閻愨晛浜剧紓鍌氬€搁崐褰掓嚌妤e啫鐓濈€广儱顦伴弲鏌ユ煕閵夈垺娅囬柣鎾愁儔濮婃椽宕滈懠顒€甯ラ梺鍝ュУ閹瑰洭宕洪埀顒併亜閹哄秶顦︾紒妤佸笚閵囧嫰顢曢敐鍥╃杽濡炪們鍨洪敃銏ゅ箖閳哄拋鏁冮柨婵嗗缂嶅矂姊婚崒姘偓椋庢濮橆兗缂氱憸宥囧弲闂侀潧鐗嗛幃鍨洪鍕庘晠鏌嶆潪鎷屽厡闁告棑绠戦—鍐Χ閸℃鐟ㄩ梺绋款儏濡繂顕i妸鈺傚亱闁割偁鍨婚鏇熺節閵忥絾纭炬い鎴濇搐鐓ら悗鐢电《閸嬫挾鎲撮崟顒傦紭闂佹悶鍔忔慨銈嗙┍婵犲洤閱囬柡鍥╁仧閸婄偤姊洪棃娴ㄥ綊宕曢悜妯侯嚤闁哄洢鍨洪悡鐔兼煟閺傛寧鎲搁柣顓炶嫰椤儻顦虫い銊ョ墦瀵偊顢欓崲澶嬫瀹曨亪宕橀鍡忔(婵犵數濮伴崹濂稿春閺嶎厼绀夐柡宥庡幖绾惧鏌ㄥ┑鍡╂Ч闁绘挻娲熼弻鏇熷緞濡櫣浠╁銈傛櫓閸撴瑩鍩ユ径鎰闁荤喐澹嗗В銏㈢磽娴d粙鍝洪悽顖涱殔宀h儻绠涘☉妯溾晝鎲歌箛娑欏仼濠靛倸鎲¢埛鎴犳喐閻楀牆淇俊顐e灥閳规垿鎮欓埡浣峰闂傚倷娴囬鏍窗濡ゅ啫鍨濋柟鎹愵嚙缁犳澘鈹戦悩鎻掓殭缂佸墎鍋涢…璺ㄦ崉閾忓湱浼囧┑顔硷功閸嬫挾鎹㈠┑瀣仺闂傚牊绋愮划璺侯渻閵堝棙澶勯柛妯圭矙楠炲牓濡搁敂鍝勪簼闂佸憡鍔戦崝宥呂i鍕拺闁告繂瀚埢澶愭煕濡亽鍋㈢€规洖缍婂畷鎺楁倷鐎电ǹ甯惧┑鐘垫暩閸嬬喖宕戦幘鏂ユ瀺闁糕剝绋掗悡鏇㈡倵閿濆啫濡煎┑鈥炽偢濡焦寰勯幇顓犲弳濠电娀娼уΛ娆撳闯瑜版帗鐓涢柛鈩冪懃閺嬫垵菐閸パ嶈含妞ゃ垺绋戦~婵嬪础閻愨晛寰嶅┑鐘愁問閸犳牠鏁冮妷銉富濞寸姴顑冮埀顑跨窔瀵挳濮€閳╁啯鐝抽梻浣虹《閸撴繈鎮烽敃鍌ゆ晣濠电姵纰嶉埛鎺懨归敐鍫燁仩閻㈩垱鐩弻鐔哄枈閸楃偘绨介梺鐟扮畭閸ㄥ綊鍩為幋鐘亾閿濆骸澧紒渚婄畵閺岋絾鎯旈婊呅i梺鍝ュУ閻楁粎鍒掓繝姘櫜闁糕剝鐟ч惁鍫熺節閻㈤潧孝闁稿﹥鎮傞、鏃堫敃閿旂晫鍘甸梺鍝勵儛閸嬪嫭鎱ㄩ崒娑欏弿濠电姴鍟妵婵囶殽閻愭潙濮堥柟顖涙閺佹劙宕掑☉杈ㄧ秾闂傚倸鍊风粈渚€骞栭锔藉亱婵犲﹤鐗嗙粈鍫ユ煟閺冨牜妫戦柡鍡畵閺岋綁鎮㈢粙娆炬闂佸壊鍋掓禍顏堝蓟濞戙垹鍗抽柕濞垮劚鐎涳絽鈹戦悙瀛樼稇閻庢凹鍓熼垾鏃堝礃椤斿槈褔鏌涢埄鍐炬畼闁荤喐鍔欏铏圭磼濡椽鍤嬬紓浣哄У閹告悂顢氶敐澶婄缂佹稑顑嗛弲婊堟⒑閸撴彃浜為柛鐘虫崌瀹曘垽鏌嗗鍡忔嫼闂佽崵鍠撴晶妤呭箚閸垻纾煎璺侯儐缂嶆垿鏌i敐鍥ㄦ毈鐎规洖宕埥澶娾枎閹存繂绗氶梺鑽ゅ枑缁秶鍒掗幘宕囨殾婵犲﹤鍠氬ḿ鈺傘亜閹烘埈妲归柛宥囨暬濮婃椽妫冨ù銉ョ墦瀵彃饪伴崼婵堬紱闂佺ǹ鐬奸崑鐐烘偂閵夆晜鐓熼柡鍌涘閹牏鈧稒绻堥弻锝夋偄閸濄儲鍤傜紓浣哄У閹瑰洭鎮伴鈧浠嬵敇閻愭鍟囨俊鐐€栭幐楣冨磻閻斿摜顩锋い鏍ㄧ矌绾捐棄霉閿濆棗绲诲ù婊呭亾缁绘繈濮€閿濆棛銆愰梺鎰佸灡濞叉繈濡甸幇鏉跨闁瑰濯Σ顖炴⒒娴e懙鍦崲濡ゅ懎纾婚柟閭﹀厴閺嬫棃鏌曢崼婵愭Ч闁抽攱鍨圭槐鎾存媴鐠愵垳绱扮紓浣哄У閻楃娀寮婚敐澶婄厸濠电姴鍊绘禒鈺呮⒑娴兼瑧鎮奸柛蹇旓耿瀵偊骞樼紒妯轰汗闂佽偐鈷堥崜锕€危娴煎瓨鈷掑ù锝堟娴滃綊鏌嶅畡鎵ⅵ鐎规洘绮岄~婵囷紣濠靛洦娅撻梻浣侯攰閹活亪姊介崟顖氱厱闁硅揪闄勯崑锝夋煕閵夘垳宀涢柛瀣崌閹煎綊顢曢妶鍕寜闂傚倸鍊风粈渚€骞夐敓鐘茶摕闁靛⿵瀵屽▓浠嬫煙闂傚顦﹂柣鎾寸箞閺岀喖骞戦幇闈涙缂備胶濯寸紞渚€寮婚敐澶婄疀妞ゆ挾鍠撶粙鍥ь渻閵堝懎顒㈤柟鍛婃倐閸╃偤骞嬮敂钘変汗闁荤姴娉ч崘褏鐭楅梻鍌欑閹芥粓宕抽妷鈺佸瀭闁割偅娲滃畵渚€鏌涢埄鍐槈缁炬儳鍚嬮幈銊╂晲鎼粹€崇缂傚倸绉撮敃顏堢嵁閸愵喖鐓涢柛娑卞幘椤斿矂姊洪崷顓炲妺缂佽鍊规穱濠囨煥鐎n剛鐦堥梺姹囧灲濞佳嗏叴闂備胶枪椤戝棝骞戦崶顒€钃熼柣鏂跨殱閺嬫棃鏌涢…鎴濇灍闁诲繑鎸剧槐鎺撱偅閸愵亞鏆紓浣哄У閻楃姴顕f繝姘亜閻炴稈鈧厖澹曢梺姹囧灮濞呫儵鎮烽悧鍫熺槑闂備浇宕甸崰鎰垝鎼淬垺娅犳俊銈呮噺閸嬪倿鏌ㄩ悢鍝勑㈤柦鍐枑缁绘盯骞嬪▎蹇曚患缂備胶濮垫繛濠囧蓟閿熺姴纾兼慨妯块哺閻ㄦ垿姊洪崫鍕靛剰闁瑰啿閰i崺鐐哄箣閿旇棄鈧兘鏌涘▎蹇fЦ婵炲拑缍佸缁樻媴缁嬭法鐩庣紓浣藉皺閸嬫挾绮氭潏銊х瘈闁搞儜鍜佸晪婵$偑鍊栧Λ浣规叏閵堝應鏋嶉柕蹇嬪€栭埛鎴︽偣閹帒濡兼繛鍛姍閺岀喖宕欓妶鍡楊伓ABSTRACT
The relative contribution of measles virus hemagglutinin (H)- or fusion protein (F)-specific antibodies to virus neutralization (VN) has not been demonstrated. We have depleted these specific antibodies from sera collected from young adults, who had been vaccinated during childhood, by prolonged incubation with viable transfected human melanoma cells expressing H or F. Simultaneous depletion of antibodies of both specificities completely abrogated VN activity. Depletion of F-specific antibodies only had a minimal effect, whereas removal of H-specific antibodies resulted in almost complete reduction of VN activity. These results demonstrate that measles virus neutralizing antibodies are mainly directed to the H protein.
TEXT
Measles virus (MV) is a member of the family Paramyxoviridae, genus Morbillivirus. It is transmitted via the respiratory route and has an incubation phase of 9 to 19 days (7). Whereas the cellular immune response is thought to be crucial for clearance of infection, virus-neutralizing (VN) antibodies are an important correlate of protection (4). VN antibody levels of 0.1 to 0.2 international units (IU) per ml, equivalent to titers of approximately 1:8 to 1:16, have been shown to protect from disease (2, 10) and interfere with the efficacy of live-attenuated measles vaccines (6, 14). VN antibodies are exclusively directed to the hemagglutinin (H) or fusion protein (F) and mostly recognize conformational epitopes (1). It has been suggested that H-specific antibodies are the major contributors to VN activity (1), but this has never formally been demonstrated.
We have recently developed a fluorescence-activated cell scanner (FACS)-measured immunofluorescence assay for the detection of MV H- and F-specific antibodies, using the stably transfected human melanoma cells Mel-JuSo/MV-H or Mel-JuSo/MV-F as target cells (3), and used this assay for the detection of specific antibodies in humans and experimentally infected animals (5, 8, 12). Here, we have used the same cells to deplete H- or F-specific antibodies from polyclonal sera. Interactions between antibody and antigen result in an equilibrium between bound and unbound antibody. For depletion of unbound antibodies the antigen/antibody complexes should be removed from the system. We achieved this by culturing H- or F-expressing cells in medium supplemented with 10% of the test serum.
From our serum bank we selected 160 samples collected in 2002 or 2003 from healthy subjects born in the period 1980 to 1985. Measles vaccination was introduced in The Netherlands in 1976 and was replaced by vaccination with measles-mumps-rubella in 1987 (15). The subjects included in this study therefore most likely received a monovalent measles vaccination at the age of 14 months and a measles-mumps-rubella vaccination at the age of 9 years. Measles has become a rare disease in The Netherlands, with sporadic outbreaks in communities with low vaccination coverage. Therefore, the majority of these subjects was probably never exposed to wild-type MV. Since samples with low MV-specific antibody levels were considered of limited use for this study, the sera were first tested in an in-house MV-specific immunoglobulin G (IgG) enzyme-linked immunosorbent assay. The 64 samples (40%) with the lowest signals in this test were excluded from further analysis. The remaining 96 samples were heat inactivated (30 min, 56°C) and tested anonymously.
Mel-JuSo cells expressing the MV H or F protein or the untransfected parental cell line (Mel-JuSo/wt) were seeded in 96-well flat-bottom plates in RPMI 1640 medium supplemented with antibiotics and 10% fetal bovine serum (FBS). When monolayers were nearly confluent, supernatants were replaced with medium containing 10% of the different test sera (150 μl/well). Supernatants were collected after 0, 1, 2, or 3 days of culture for 10 different samples and were tested for the presence of H- or F-specific IgG as previously described (3) after 1:10 dilution in phosphate-buffered saline (PBS) supplemented with 3% FBS. After 3 days of culture on H-expressing cells, H-specific IgG antibodies were efficiently depleted while F-specific antibody levels remained unaffected (Fig. 1). The inverse pattern was observed for sera incubated on F-expressing cells, while incubation on the untransfected cell line left both H- and F-specific antibody levels virtually unchanged (Fig. 1).
Next, H- and/or F-specific antibodies were removed sequentially and VN activity of the resulting samples was determined. Mel-JuSo cells were grown in medium supplemented with 10% of the test serum for a period of 3 days (round 1). Supernatants were then transferred to freshly seeded Mel-JuSo cells and cultured for another three days (round 2). To make certain that all samples had a comparable culture history, samples from which no or only a single specific antibody was depleted were also cultured on untransfected Mel-JuSo cells. Four conditions were used: condition 1 (no depletion), Mel-JuSo/wt (round 1)Mel-JuSo/wt (round 2); condition 2 (H depletion), Mel-JuSo/MV-H (round 1)Mel-JuSo/wt (round 2); condition 3 (F depletion), Mel-JuSo/MV-F (round 1)Mel-JuSo/wt (round 2); and condition 4 (H and F depletion), Mel-JuSo/MV-H (round 1)Mel-JuSo/MV-F (round 2). All assays were also performed on the original sera (referred to as condition 0).
As shown in Fig. 2 and 3, this protocol was successful in depleting H- and/or F-specific IgG from the polyclonal test sera. Virus neutralization was measured by endpoint titration as previously described (12) and expressed in international units (IU) per milliliter, using the international reference serum for measles (serum 66/202; 5 IU per ml; World Health Organization International Laboratory for Biological Standards, National Institute for Biological Standards and Control, Hertfordshire, United Kingdom). Effective depletion was confirmed by showing that depletion of both H- and F-specific antibodies resulted in complete abrogation of the capacity to neutralize MV strain Edmonston (Fig. 4). Depletion of F-specific antibodies only had a minimal effect on the VN titers of the serum, whereas depletion of H-specific antibodies resulted in an almost complete reduction of VN activity (Fig. 4).
We hypothesize that the depletion of specific antibodies in this protocol is the result of internalization and degradation of bound antibodies by the H- or F-expressing cells. Since new recombinant protein is continuously produced, expressed on the cell surface, and available for binding antibody, this eventually depletes unbound antibodies from the sample without affecting antibodies with other specificities. Protein-specific antibodies in sera with VN antibody levels up to 10 IU/ml were effectively depleted (Fig. 4), demonstrating that the depletion assay had a dynamic range with a relatively high upper limit.
The effectiveness of this approach would be expected to depend on the avidity of the serum. This was confirmed by preliminary depletion studies using a limited number of early-convalescent-phase sera collected from patients infected with wild-type MV from which H- or F-specific antibodies could not effectively be depleted (results not shown). However, in the present study all sera were collected several years after vaccination and thus may be expected to have contained only high-avidity antibodies. Another prerequisite is the absence of toxicity: a few (3 out of 96) serum samples in our study did not accommodate growth of the Mel-JuSo cells, resulting in incomplete depletion (these samples were excluded from the final analysis).
Genetic variability of the virus under investigation may also play an important role. Although MV is a monotypic virus, some genetic variability exists, with the highest level in the H gene (16). In the present study we have used a homologous system: both the vaccine and the genes used for transfecting the cells belonged to clade A. It has been suggested that genetic variability of wild-type MV strains could in part be due to positive selection of viruses less susceptible to neutralization by vaccination-induced antibodies (9, 11). Therefore, depletion of H- and F-specific antibodies induced by infection might not completely remove the capacity to neutralize the wild-type virus. To test this hypothesis we are currently collecting late-convalescent-phase serum samples from subjects infected with recent wild-type strains.
Finally, wild-type MV strains use the signaling lymphocyte activation molecule (SLAM; CD150) as a cellular receptor, while MV-Edmonston and MV vaccine strains can use both SLAM and CD46 (13). The neutralization assay used in the present study is based on MV Edmonston infection of Vero cells, which is completely dependent on CD46 as a receptor. It would therefore be interesting to study the effect of depletion of H- and F-specific antibodies induced by infection on neutralization of wild-type MV strains in SLAM-expressing cells.
In conclusion, we have depleted H- and/or F-specific antibodies from polyclonal sera collected from young adults more than 10 years after measles vaccination. Successful depletion was demonstrated by the loss of protein-specific IgG fluorescence signals and by the complete abrogation of VN activity in samples from which both H- and F-specific antibodies were depleted. The results described indicate that H-specific antibodies are the main correlate of vaccination-induced MV neutralization. Studies on monitoring vaccination efficacy in relation to newly emerging MV genotypes should therefore largely focus on the H protein, which could ultimately have consequences for the design of new generations of measles vaccines. Finally, the depletion assay used may also be of value for determining the role of protein-specific antibody responses in other virus infections.
ACKNOWLEDGMENTS
We thank Ann Vossen and Hans Kruining for their contributions to this study.
REFERENCES
Bouche, F. B., O. T. Ertl, and C. P. Muller. 2002. Neutralizing B cell response in measles. Viral Immunol. 15:451-471.
Chen, R. T., L. E. Markowitz, P. Albrecht, J. A. Stewart, L. M. Mofenson, S. R. Preblud, and W. A. Orenstein. 1990. Measles antibody: reevaluation of protective titers. J. Infect. Dis. 162:1036-1042.
De Swart, R. L., H. W. Vos, F. G. C. M. UytdeHaag, A. D. M. E. Osterhaus, and R. S. Van Binnendijk. 1998. Measles virus fusion protein- and hemagglutinin-transfected cell lines are a sensitive tool for the detection of specific antibodies by a FACS-measured immunofluorescence assay. J. Virol. Methods 71:35-44.
Duke, T., and C. S. Mgone. 2003. Measles: not just another viral exanthem. Lancet 361:763-773.
El Mubarak, H. S., S. A. Ibrahim, H. W. Vos, M. M. Mukhtar, O. A. Mustafa, T. F. Wild, A. D. M. E. Osterhaus, and R. L. De Swart. 2004. Measles virus protein-specific IgM, IgA and IgG subclass responses during the acute and convalescent phase of infection. J. Med. Virol. 72:290-298.
Garly, M.-L., and P. Aaby. 2003. The challenge of improving the efficacy of measles vaccine. Acta Trop. 85:1-17.
Griffin, D. E. 2001. Measles virus, p. 1401-1441. In D. M. Knipe and P. M. Howley (ed.), Fields virology. Lippincott Williams & Wilkins, Philadelphia, Pa.
Hartter, H. K., R. L. De Swart, F. Hanses, H. W. Vos, F. B. Bouche, A. D. M. E. Osterhaus, F. Schneider, and C. P. Muller. 2000. Evaluation of different measles IgG assays based on recombinant proteins using a panel of low-titre sera. J. Virol. Methods 84:191-200.
Klingele, M., H. K. Hartter, F. Adu, W. Ammerlaan, W. Ikusika, and C. P. Muller. 2000. Resistance of recent measles virus wild-type isolates to antibody-mediated neutralization by vaccinees with antibody. J. Med. Virol. 62:91-98.
Samb, B., P. Aaby, H. C. Whittle, A. M. Coll Seck, S. Rahman, J. Bennett, L. Markowitz, and F. Simondon. 1995. Serologic status and measles attack rates among vaccinated and unvaccinated children in rural Senegal. Pediatr. Infect. Dis. J. 14:203-209.
Santibanez, S., S. Niewiesk, A. Heider, J. Schneider-Schaulies, G. A. M. Berbers, A. Zimmermann, A. Halenius, A. Wolbert, I. Deitemeier, A. Tischer, and H. Hengel. 2005. Probing neutralizing-antibody responses against emerging measles viruses (MVs): immune selection of MV by H protein-specific antibodies J. Gen. Virol. 86:365-374.
Stittelaar, K. J., L. S. Wyatt, R. L. De Swart, H. W. Vos, J. Groen, G. Van Amerongen, R. S. Van Binnendijk, S. Rozenblatt, B. Moss, and A. D. M. E. Osterhaus. 2000. Protective immunity in macaques vaccinated with a modified vaccinia virus Ankara-based measles vaccine in the presence of passively acquired antibodies. J. Virol. 74:4236-4243.
Tatsuo, H., N. Ono, K. Tanaka, and Y. Yanagi. 2000. SLAM (CDw150) is a cellular receptor for measles virus. Nature 406:893-897.
Van Binnendijk, R. S., M. C. M. Poelen, G. Van Amerongen, P. De Vries, and A. D. M. E. Osterhaus. 1997. Protective immunity in macaques vaccinated with live attenuated, recombinant and subunit measles vaccines in the presence of passively acquired antibodies. J. Infect. Dis. 175:524-534.
Van den Hof, S., G. A. M. Berbers, H. E. De Melker, and M. A. E. Conyn-van Spaendonck. 1999. Sero-epidemiology of measles antibodies in the Netherlands, a cross-sectional study in a national sample and in communities with low vaccination coverage. Vaccine 18:931-940.
World Health Organization. 2003. Update of the nomenclature for describing the genetic characteristics of wild-type measles viruses: new genotypes and reference strains. Wkly. Epidemiol. Rec. 78:229-232.(Rik L. de Swart, Selma Yü)